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Abstract

The initial SciDAC initiative developed the Common Component Architecture (CCA) and brought the bene-
fits of component-based software engineering to high-performance scientific software. Scientific teams who
have adopted the CCA are now realizing the advantages of this extensible environment, which facilitates
software interoperability within and across scientific domains, addressing issues in programming language
interoperability, domain-specific common interfaces, and dynamic composability. Teams increasingly report
that the CCA has become integral to the future of their science.

We propose to extend the software component methodology, in close collaboration with a number of
key application projects, through an interlinked series of initiatives, leveraging the component environment
to develop powerful new capabilities. The initiatives focus on coupling parallel simulations, supporting
emerging hardware and software paradigms for petascale computing, enhancing software quality and ro-
bustness, and dynamically adapting applications. We will continue to enhance the core CCA software
environment, with emphasis on improving usability, and we will build a component ecosystem to provide
more off-the-shelf components. Outreach activities include tutorials and other educational activities as well
as collaborations with numerous applications, Centers for Enabling Technology, and Institutes.
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1. Project Description

1.1 Background and Significance
Computational scientists face ever-increasing challenges in creating, managing, and applying simulation
software to scientific discovery. These challenges, which arise from the growing complexity of the scien-
tific problems and the rapid advances and increasing diversity in hardware platforms, impact researchers’
productivity throughout the life cycle of their scientific software.

The next generation of scientific applications will be larger and more complex, and will require contribu-
tions from more diverse groups of developers; coupling simulations across multiple time- and length-scales
will become the norm rather than the exception. These simulations will run on more complicated and di-
verse hardware platforms. The Department of Energy (DOE) Office of Science Strategic Plan [1] calls for
a 100-fold increase in facility capabilities from 2004 to 2007, and full petaflop capabilities for open science
by 2012; the President’s FY2007 Budget Request would deploy a 500 TF system by 2008 [2]. Systems
with O(104 − 105) processors are already being deployed [3]. This evolution will transform component
technology from a useful tool for forward-thinking software developers to an indispensable strategy across
the entire spectrum of computational science.

In other areas of computing, component-based software engineering (CBSE) is now widely used as a
tool to help software and application developers address large-scale, complex software systems that must
evolve over time and across platforms. The fundamental premise of CBSE is the organization of software
into components with well-defined functionality which interact with each other through explicitly defined
interfaces. The complexity of individual software modules is thus encapsulated, and of concern only to the
implementer, while users of the components, need to worry only about the interfaces through which they
interact with other components. This modularity helps software developers focus on one component at a
time, as a major aid in addressing the complexity of large software systems. However, component-based
approaches are not merely an aid to software development, but also provide benefits across the entire life
cycle of simulation software. Their modularity simplifies group- and community-scale collaboration on de-
veloping and using software and facilitates reuse and interoperability of code across multiple applications.
The component paradigm allows easy adaptation of software in response to performance, algorithmic, nu-
merical quality, and other concerns both prior to and during execution. The evolution of software, including
complex challenges such as coupling with other simulation software are also more natural in component
environments. All of these are important and growing challenges as the computational science community
seeks to expand its capabilities by harnessing coming petascale systems and enhancing the size, scope, and
fidelity of their simulations.

This proposal builds upon and extends the work of the Center for Component Technology for Teras-
cale Simulation Software (CCTTSS), sponsored by the Scientific Discovery through Advanced Computing
(SciDAC) program (2001–2006). The CCTTSS has developed a component model tailored to the needs
of high-end scientific computing (the Common Component Architecture (CCA)) and provided a reference
implementation of the CCA environment. In collaboration with library developers, the CCTTSS has begun
to establish a toolkit of components based on widely-used scientific libraries. Applications in a broad range
of scientific disciplines, supported by the DOE and other agencies, have begun to adopt CCA technology in
order to gain the numerous benefits that a component approach offers high-performance computing (HPC)
scientific computing. The CCA has become recognized throughout the high-performance scientific comput-
ing community as the component architecture of choice.

Our vision for TASCS is to build upon and extend the established core of the CCA to meet the needs of
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Project Description 1.2 Results of Prior Support

next-generation computational science software projects. Strongly guided by the needs of our application
partners and collaborators, we will make the CCA environment more accessible and user-friendly, especially
for those who employ only a subset of the CCA’s features, and we will expand the component “ecosystem”
to provide a richer selection of “off the shelf” components for use in the assembly of applications. We
will work with our application partners on a number of technology initiatives, designed to leverage the
component environment to provide applications with new and enhanced capabilities, such as (1) computing
at the ultrascale, include a generalized approach to parallel coupling of disparate simulation codes, (2)
automated and dynamic behavior to insure computational “quality of service”, and (3) tools and techniques
for writing better scientific software.

1.2 Results of Prior Support

Figure 1.1: Chemistry application in
the Ccafe GUI.

Since 1998 the CCA Forum has focused primarily on the research
and development to bring CBSE to high-performance scientific
computing. Our Common Component Architecture (CCA) [4, 5]
specifically addresses requirements of the scientific community,
including performance [6–10], support for parallel [11] and dis-
tributed [12–19] computing models, language support and interop-
erability [20], and ease of adoption [21] which are not adequately
addressed by “commodity” component models widely used in
other areas of computing [22–24]. Our reference implementations
provide environments to create and run CCA applications. And we
have worked with numerous application groups to incorporate CCA technology into their applications. The
net result is that the core CCA technology is now established, available, and being used in an increasing
number of applications. Dramatic benefits of CBSE have been demonstrated in some applications, and a
growing number of groups are building the CCA into their future software development plans. The CCA
community is rapidly growing beyond the DOE-funded project that launched it.
Defining a Component Architecture for High-Performance Scientific Computing. The CCA specifi-
cation [11] defines the architecture and is designed for simplicity and minimalism. It defines the rights,
responsibilities, and relationships among the CCA: software components, the ports or interfaces through
which they interact, and the framework in which components are assembled into applications and executed.

CCA’s minimalism implies that a well-structured piece of software must implement just one new method
to become a CCA component. The CCA defines only procedural interactions between ports, and does
not impose a particular parallel programming model on applications, making it more easily incorporated
into existing parallel applications. Components using different parallel programming models can coex-
ist [25], as demonstrated in an application simultaneously using MPI- [26], PVM- [27] and Global Array-
based [28, 29] components. The port model for CCA components transparently accommodates both local
high-performance and distributed implementations.

The CCA specification is at version 0.7.8, has been stable since April 2004, and with additions pro-
posed here will meet our criteria for a “1.0” release. We see backward compatibility as essential and
minimize the impact on existing users when modifying the specification (for example, the recently added
ComponentReleasemechanism).
Developing the Core CCA Software Environment. A CCA-compliant framework allows components
to be loaded, assembled to create scientific applications, and executed. The CCTTSS has developed frame-
works targeting different computing environments. Ccaffeine [11], led by SNL, emphasizes HPC paral-
lelism, with components located in the same address space passing arguments by reference rather than
copying, and support for both Graphical User Interface (GUI) (Fig. 1.1) and scripted application composi-
tion. XCAT [18, 30–32] focuses on distributed computing environments, using the Proteus multi-protocol
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library [33, 34] as the transport layer, and provides a bridge between CCA and web-services [35, 36]. The
SCIRun2 [37,38] framework supports a multi-threaded parallel programming model and a meta-component
system for integrating CCA components with other component systems [39–43]. One element of this pro-
posal is establishing standard to insure interoperability between CCA frameworks to accommodate mode
complex computing environments.

The second major element of CCA is the Babel language interoperability tool [44], using the Scientific
Interface Definition Language (SIDL) for programming language neutral expression of interfaces. Based on
SIDL descriptions, Babel provides the glue (generated code and supporting libraries) so that and combina-
tion of supported languages (currently C, C++, Fortran77, Fortran95, Java, and Python) can be intermixed
[20] in a single address space, without relying on messaging layers or interpreted middleware for maximal
performance [45]. Because of Babel’s central role in the interactions between components, it is key for the
introduction of other new capabilities, such as the definition and enforcement of interface semantics [46–48],
and remote method invocation (RMI) capabilities [49], both of which are to be extended in this proposal.

In addition to these is a collection of smaller tools and conventions to help configure, build, and install
components. Collectively referred to as the “CCA base installation”, this is a distillation of our experi-
ence incorporating CCA into existing applications and platforms. Because of the complexity of the con-
figure/build/install process for large-scale applications, especially those involving multiple programming
languages and many external libraries, these tools are continually improved. Preliminary work has also
been done on the use of Integrated Development Environments (IDEs), such as Eclipse [50], to work with
CCA software. These activities will play an important role in the new proposal.
CCA Components and the CCA Toolkit. The CCTTSS has begun an effort to establish a “component
ecosystem” as an aid to users adopting the CCA. This effort has encompassed working with various com-
munities to develop common interfaces to facilitate interoperability of libraries across a discipline [51, 52],
including TOPS [53] solver components [54] and TSTT [55] mesh interfaces [56], as well as providing a
collection of CCA components in the form of a general toolkit. Though not yet formally distributed, the
CCA Toolkit currently contains 16 components [57], contributed on a volunteer basis and typically derived
from CCA applications. Part of the proposed work is to broaden and extend the Toolkit, including more
general utility components. Preliminary versions of these components were recognized by the DOE Office
of Science as one of the top ten scientific achievements of 2002 [58, 59].
Changing the Way Application Scientists Approach their Software. The CCTTSS has worked with a
broad range of applications, both SciDAC and others, to incorporate CCA technology. Current areas include
astronomy, astrophysics, biological and medical simulations, chemically reacting flow, climate and weather
modeling [60], combustion [61,62], computational chemistry [63–65], data management [66,67], optimiza-
tion [65,68], fusion and plasma physics modeling [69], linear algebra [70,71], PDE solution [43,51,59,72],
materials science, molecular electronics, nanoscience, nuclear power plant simulations [73], load-balancing
structured adaptive meshes [74, 75], unstructured meshes [51, 56], and visualization. These adopters are
realizing a variety of benefits from the CCA. For some, the CCA makes geographically distributed collab-
oration on a large software project more manageable and more productive. For others, CCA helps scientific
communities realize synergies from collaboration to create software that interoperates beyond the bounds
of individual projects. Other groups focus on the CCA’s language interoperability, or use it to facilitate
the coupling of existing codes into multiphysics simulations. To illustrate, we briefly expand on just two
examples of applications.

The SciDAC Computational Facility for Reacting Flow Science (CFRFS) project [76] has used the
CCA to develop a toolkit for flame simulations. The toolkit currently includes more than 60 distinct CCA
components, which can be assembled to carry out a broad range of simulations [62, 77]. Habib Najm, the
lead PI, states [78],

“The CCA has provided us with a great framework for developing and maintaining reacting
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flow codes. By providing well-defined interfaces and encouraging a code structure based on a
hierarchy of interchangeable, lightweight, the CCA-based CFRFS toolkit has resolved signifi-
cant challenges with handling reacting flow code complexity.”

Componentization also allows CFRFS to use state-of-the-art externally developed software and has helped
combustion researchers extend its capabilities. Swapping out a single component allowed them to introduce
higher-order discretizations, giving drastic reductions in both resolution capability and simulation time [62,
79].

Two groups of quantum chemistry researchers are using the CCA to extend the capabilities of the
NWChem [80–82] and MPQC [83, 84] codes in ways they would not have considered feasible otherwise.
A collaboration of PNNL, SNL, and ANL researchers used the CCA to access state-of-the-art optimization
algorithms in the Toolkit for Advanced Optimization (TAO), and parallel data management in the Global
Arrays package, to reduce run times up to 43% for determining a molecular structure [63]. The chemistry
team is working with developers of GAMESS (Ames Lab, Iowa State University, and ORNL) [85, 86] to
enable each chemistry code to use novel features of the others to perform calculations that no single package
can do [81, 84, 86, 87]. In addition, the PNNL team achieved an order of magnitude improvement in perfor-
mance for Hessian evaluation by using the CCA to construct a new hybrid algorithm using multiple levels of
dynamic parallelism [88]. NWChem leader Theresa Windus states [89], “The hybrid algorithm would have
been impractical to implement in a reasonable time without using the CCA; we see CCA-based technology
as the foundation of future software development in chemistry.”

These two examples are illustrative of the experience of many CCA users, who find that it allows them
to explore approaches to software and scientific research that would have otherwise been extremely difficult
to implement, and as a result realizing greater scientific productivity.
Nucleating a Broader Community for High-Performance Scientific Component Software. Although
the CCTTSS project initially represented the entire CCA community, over its five year lifetime the CCA
community has grown much larger and broader. Typically, around one quarter of participants in the quarterly
CCA Forum meetings are not associated with CCTTSS, and roughly the same percentage of Forum meetings
have been hosted by institutions outside of CCTTSS. The Forum’s main mailing list currently includes 192
members. An increasing number of non-DOE projects are using and contributing to CCA development.
We are aware of numerous CCA-related projects funded by the Dept. of Defense (DoD), European Union,
National Aeronautics and Space Administration (NASA), National Institutes of Health (NIH), National
Science Foundation (NSF), Northrup Grumman, and others.

Broader still is the influence of CCA ideas on the HPC community. Even those who are not using our
implementation of components are increasingly adopting the ideas and design patterns of CBSE in their
projects, due in large part to our outreach (evangelism) activities. Nowadays anyone who seeks to build an
HPC component system first looks to the CCA. Other community-building activities of the CCTTSS have
included more than 50 peer-reviewed scientific papers (including a Best Paper Award at the 2005 IPDPS
conference [90]) and many more talks; organization of, and participation in scientific workshops and meet-
ings; numerous tutorials; and education of the next generation of computer and computational scientists,
through completion of Masters and PhD theses, incorporation of CCA into courses, and student internships
at National Laboratories. This community development is an important and valuable complement to DOE’s
direct investment in the CCA.

1.3 Overview of Technical Approach
To address the needs of the next generation of computational science applications, we organize our work
around four central thrust areas. Component Technology Initiatives (Sec. 1.5) focus on developing new
and enhanced capabilities for applications. The CCA Environment (Sec. 1.6) itself must be supported for
existing and new users, as well as extended to support the needs of the Initiatives. We will also strongly focus
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on making the CCA environment easier to use. The CCA Toolkit (Sec. 1.7) will develop a “component
ecosystem” by making more software available in component form, and by developing common interfaces
to unify access to existing software. Finally, our effort in User and Application Outreach and Support
(Sec. 1.8) focuses on assisting applications groups through direct interactions, documentation, and tutorial
and example materials. The work we propose is strongly motivated by our interactions with numerous
applications, and is tightly integrated, both across the focus areas and across the participating institutions.
Each thrust’s activities are described in more detail below.

1.4 Motivating Applications and Collaborations
With CCA technology already being used in over a dozen different fields of science, the CCTTSS has
developed extensive interactions with a wide range of applications as well as with other enabling technology
centers. TASCS will build upon and extend these interactions in both breadth and depth. The enhancements
and initiatives that we propose are motivated by the needs of these application groups. From among the
many applications that will ultimately benefit from these developments, we have selected a small number as
exemplars, to provide specific guidance to the development activities and serve as testbeds.

The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project [91] was
recently funded as an Fusion Simulation Project (FSP) prototype under the SciDAC program. The primary
focus of this center is the coupling of different aspects of plasma physics to produce integrated simulations.
As with many coupling efforts, this project starts with substantial bodies of existing code that cannot be com-
pletely rewritten to accommodate the integration. This situation motivates developing a Parallel Coupling
Infrastructure (PCI) (Sec. 1.5.1) to support incrementally moving from disparate applications to progres-
sively more tightly coupled, higher-performance integrated simulations. Because simulation components
have to continue to function properly in standalone use even as they are adapted to support the integrated
physics, extensive and detailed testing of components in both contexts will be required. This is a key motiva-
tor for the enhanced verification mechanisms of our Software Quality and Verification initiative in Sec. 1.5.3
and the “test harness” work of Sec. 1.6.3.

The DOE computational chemistry community currently anticipates an FY2007 call for large-scale com-
munity software centers focusing on high-end capabilities. Based on work by the CCTTSS, the major play-
ers in this community are already convinced that the CCA’s component approach is central to the success of
any community software integration and development effort [92]. However, to reach the petascale, chem-
istry applications need much better tools to express dynamic multiple-program multiple-data (MPMD) and
Multi-Level Parallelism (MLP). We will collaborate with the developers of the NWChem parallel compu-
tational chemistry package [80–82, 93] to develop these capabilities as part of our Initiative on Emerging
HPC Hardware and Software Paradigms (Sec. 1.5.2). Large, long-running chemistry calculations will also
be the focus of work on providing fault tolerance capabilities in the CCA environment. In the computational
biology community, heterogeneous computing environments are beginning to play an important role. We
will work with on-going DOE effort in this area [94], to develop CCA capabilities for Field-Programmable
Gate Array (FPGA) systems.

The CFRFS project [95], in collaboration with the CCTTSS, has developed an extensive toolkit for
combustion simulation. The diversity of simulations enabled by the toolkit can make it challenging for users
to confirm that various interchangeable components are indeed used properly. Another challenge for users of
the combustion toolkit is making sound choices from among the available implementations and parameters,
with suitable trade-offs among performance, accuracy, mathematical consistency, and reliability [96]. Both
challenges motivate our work in interface semantics and verification described in Sec. 1.5.3. In addition,
building on preliminary work by the CFRFS, CCTTSS, and Allen Malony’s group at the University of
Oregon, we plan to exploit the dynamic nature of components to provide “computational quality of service”
(CQoS) capabilities, thereby allowing applications to adapt during execution to the specifics of a particular
problem instance and its execution environment (Sec. 1.5.3 and 1.5.4); this CQoS work is further motivated
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Project Description 1.5 Component Technology Initiatives

by simulations in quantum chemistry [92], high-energy accelerator physics [97], and fusion [98].
Collaborations with other Centers for Enabling Technology also figure prominently. We plan to con-

tinue our work with the Terascale Optimal PDE Solvers (TOPS) [53] and Terascale Software Tools and
Technologies (TSTT)/Interoperable Technologies for Advanced Petascale Simulations (ITAPS) [55] cen-
ters on the development and implementation of common interfaces for solvers and meshing tools; this
solvers work is partially motivated by new SciDAC projects, including core-edge transport simulations in
fusion [98], beam dynamics simulations in high-energy accelerators [97], and electromagnetic modeling in
nuclear physics [99]. We will also collaborate with the Scientific Data Management (SDM) center [100] to
establish interoperability between the CCA environment and scientific workflow tools, such as Kepler [101].
As part of the CCA Toolkit thrust area (Sec. 1.7), all of this work will contribute to the component ecosys-
tem. The SDM collaboration specifically targets needs of the Center for Plasma Edge Simulations (CPES)
fusion integration project [102], which plans to begin with a loose coupling approach based on Kepler, but
will eventually need higher-performance coupling, such as our proposed PCI initiative will provide.

The needs of applications directly, and the Component Technology Initiatives they motivate, will require
extensions and enhancements to the CCA Environment (Sec. 1.6).

1.5 Component Technology Initiatives [Coordinator: L.C. McInnes, ANL]
Our proposed technology initiatives are based on the premise that in addition to aiding software develop-
ment, the component environment can facilitate the development and deployment of new computational
capabilities to benefit the entire life cycle of simulation software. Several initiatives support computational
science at the ultrascale by exploiting the CCA’s capabilities for adaptivity within the software life cycle
to introduce new forms of parallelism and parallel coupling mechanisms for multiphysics applications, as
well as to support heterogeneous/hybrid computing architectures and fault tolerance. Additional work ex-
ploits the component paradigm’s support for dynamic adaptivity during runtime in response to performance,
algorithmic, numerical quality, and other concerns.
1.5.1 Coupling Separately Developed Codes for Combined HPC Simulations [Coordinator:

R. Bramley, IU]
Motivation. This initiative addresses a growing problem in scientific computing: merging multiple codes
developed in isolation into a single high-performance multiphysics simulation [103–107]. Applications
such as fusion energy simulation, climate modeling, space weather, and biological cell modeling are now
combining simulations of disparate subphysics models into larger, integrated simulations. The set of soft-
ware systems and tools that help tie together such multiphysics simulations is called a “Parallel Coupling
Infrastructure (PCI)”. Current coupling efforts have common features:
1. The motivation is achieving higher-fidelity models by coupling separately developed models.
2. The submodels have an existing base of codes not originally designed to interoperate with other codes.
3. The investment in the submodel software is too extensive to duplicate, and the codes are still under active

use and development. Coupling of submodels must be done in an continuous and incremental manner
concurrently, even while the individual codes advance scientifically.

4. Some or all of the constituent codes have stringent high-performance computing requirements, including
scalable parallelism.

Presently, this is often done in an ad-hoc way, addressing only 2–3 codes in a specific area, and it often
necessitates domain investigators redeveloping methods and infrastructure. Here we propose a more gen-
eral evolutionary approach, providing a process and an infrastructure enabled by tools developed under
the TASCS. A PCI is needed for SWIM [108] and CFRFS [109], would leverage work in TSTT/ITAPS
(mediating different discretizations) [110], TOPS (solvers spanning the newly created multi-code simula-
tions) [111], and SDM (workflow and data management) [112], and is a major focus of the Institute for
Coupling High-Performance Simulations (ICS) [113] activities.
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Approach. Our goal is a PCI reusable across many different multidisciplinary simulations. Experience
from well developed areas [114–116] identifies an evolutionary process towards a unified simulations.
TASCS will create and deploy the systems tools needed in a high-performance setting for each evolutionary
stage.

A first (optional) stage uses files to transfer data among separate executables. HPC requirements imply
parallel I/O, which can use write-combining and other intermediate optimizations [117, 118]. The second
stage replaces the programs as black boxes with full component capabilities, using high-speed interconnects
to transfer data [116, 119–123]. This stage need not require application code changes [124], and computa-
tional quality of service (CQoS) (Sec. 1.5.4 could optimize the ensemble calculation. The third stage uses
a full-scale coupler component for asynchronous data sharing and concurrency among instances of the sub-
physics components. The Community Climate System Model (CCSM) [125] is a successful example of this
evolutionary process in a non-CCA context, where codes for ocean, sea-ice, atmosphere, etc. are integrated
into a single simulation.

As part of the proposed work, we will develop a PCI technology to aid each stage of this evolution.
Initially all components will be launched on a single system, such as the National Leadership Computing
Facility (NLCF) [126]. When components do not require this level of capability and can be run more
efficiently on nearby smaller scale clusters, the PCI must supply RMI-like capabilities. We will develop
technologies that are general to a wide variety of application domains but serve to couple codes that begin as
separately created sub-physics models and then are gradually integrated into a complete high-performance
multiphysics simulation. The process uses a workflow structure that couples codes with adapters converting
the output from one model to the input of another. This toolset will use parallel I/O methodology and draw
on work proposed by the SDM. At the next level of integration files will be replaced with shared memory
constructs that allow more efficient and asynchronous behavior.

We will leverage Kepler-based workflow tools [101,127] from SDM to orchestrate the execution of and
data translation between codes by adapting input and output files. These tools also can make explicit the
innate concurrency among the components that comprise the workflow and make an excellent starting point
for evolving workflow ensembles into HPC combined simulations. We will develop tools that support higher
performance asynchronous communication, allowing the move away from file-based interaction to finer
grained inter-component communication and greater parallelism. Adaptation of Argonne’s Model Coupling
Toolkit (MCT) [120, 128] provides a generalized tool for coupling these now asynchronous components,
while preserving necessary synchronizations. Other parallel data redistribution capabilities will also be
applied for efficient transfer and scheduling of parallel data exchanges [90, 129]. Collaboration with TSTT
is already providing help with the difficult issues of converting data between different discretizations.

Following the staged approach outlined above, a natural connection will be made to fusion energy sim-
ulations the first year to assist in code coupling. As MCT is generalized, PCI efforts will extend to other
applications. In each case PCI enables new types of simulations of higher fidelity than previously possi-
ble. The TSTT collaboration and evolution of MCT will help domain scientists with a generalized coupling
infrastructure providing component orchestration, data interpolation, and data translation.
Impact. Our evolutionary approach to PCI will provide applications with a clear path from the relatively
simple workflow capabilities being developed by the SDM center to fully-integrated concurrently-running
high-performance simulations, while recognizing the realities that scientists can’t afford to rewrite their
codes from scratch, and the they must continue to evolve scientifically as standalone applications too.
Though our development activities will focus on the SWIM and CFRFS applications, we will work through
the ICS and other outreach activities to insure that it satisfies the needs of the broader community. The tools
and technology we develop will be rolled out to other application projects as soon as it is ready.
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1.5.2 Emerging HPC Hardware and Software Paradigms [Coordinator: J. Nieplocha, PNNL]
Motivation. The development of petascale computational science capabilities continues to face major
challenges in adapting or developing software to effectively use emerging hardware environments. Coming
petascale computer systems will be characterized by large processor counts (systems withO(104−105) pro-
cessors are already being deployed [3]), and increasing use of heterogeneous and specialized environments,
in which FPGAs, graphics processors, and other hardware are harnessed to accelerate general scientific com-
puting. High processor counts will require applications to expose more parallelism. For situations where it
doesn’t make scientific sense to scale the problem size or resolution, using MPMD or MLP approaches, in
which different groups of processes carry out different parallel tasks simultaneously can be used to increase
parallelism, but are not easy to manage or code using current tools. Heterogeneous computing environments
will require adaptation of programs to work in the presence (or absence) of various specialty interfaces,
which are currently unique to each vendor. And finally, the sheer number of parts in petascale systems will
pose significant issues with respect to hardware (and software) faults, some of which may be most effectively
handled by fault-awareness at the application level.

The CCA design already naturally provides indirect support for these emerging computer platforms.
Components are a natural means to express and encapsulate the new algorithms that will be required. They
facilitate reuse of software across multiple applications and different disciplines, and make it easy to sub-
stitute alternate implementations (algorithms) to tune applications for particular hardware platforms. The
purpose of this Initiative is to provide applications with new capabilities which directly support the transition
to petascale computing.

Our work in this area is directly motivated by collaborations with on-going DOE projects in quantum
chemistry [93] and computational biology [94], and will also involve collaborations with existing [130] and
proposed [131, 132] research projects focusing on fault tolerance.
Approach. We will provide CCA users with more flexible and dynamic means to express application par-
allelism through the development of support for the management of process groups and multiple-component
multiple-data (MCMD) applications. This work will develop standard CCA tools and interfaces, guided in
particular by our prior experience with such applications in chemistry [88] and the threaded parallel “task
graph” execution model provided by the Uintah Computational Framework [51,133]. Towards this goal, we
will collaborate with computational chemists in PNNL’s Molecular Science Software Suite Group [93], and
with whom we have pioneered the use of component technology to address MLP challenges. This applica-
tion will also provide an opportunity to leverage CQoS work (Sec. 1.5.4) to determine the optimal size of
the processor groups executing MCMD components.

The process group abstraction will be based on, and compatible with, those in MPI-2 [26], PVM [27],
and Global Arrays [28, 29]. The MCMD management utilities can be thought of as a process-group-aware
extension to the CCA specification’s BuilderService interface to simplify dynamic modification of
MCMD component applications. The new capabilities will be cast as optional extensions to the CCA spec-
ification and implemented as service components. These new capabilities will initially be demonstrated as
part of this Initiative for geometry optimization for biological systems with NWChem, and subsequently
rolled out to a broader user base.

Our work on heterogeneous computing environments will focus on developing an appropriate set of
abstractions for the CCA environment to allow the platform-specific details of hardware accelerators to be
encapsulated in specific components that use them, and transparent to the rest of the application (including
replacing an accelerated component with a traditional implementation on platforms where the accelerator
is not available). Though currently the hardware-level interfaces vary widely by vendor, we believe that an
asynchronous computing model [134] will provide a suitably general approach, and can be implemented on
top of the event model which will be added to the CCA specification (Sec. 1.6.2). We will demonstrate the
use of this technology with proteomics application Polygraph [135, 136], which performs peptide sequence
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matching against a database of experimental mass spectra. Several sub-steps of the matching have already
been targeted for acceleration, and a variety of FPGA systems are available at PNNL and ORNL to demon-
strate portability (see Sec. ??, ??). Additionally, we will collaborate with an ongoing PNNL computational
biology project [94], where FPGA systems are being used, to develop CCA components and interfaces to
simplify their use of heterogeneous computing environments.

With respect to fault tolerance, our approach is to insure that CCA-based applications can take full ad-
vantage of the capabilities being developed by other projects focusing on this research area. This involves
first establishing a hierarchy for fault response in CCA applications. Basically, the CCA framework must
“do no harm” when a fault occurs – conveying the fault information fault-aware application components,
and in their absence, responding as sensibly and gracefully as possible on the application’s behalf. Second,
the CCA environment must interact appropriately with application-level fault tolerance tools. For exam-
ple, it must be able to use a checkpoint/restart system to save its own state, and provide the appropriate
services to application components so that they can do likewise. Our primary work in this area will fo-
cus on checkpoint/restart services, in collaboration with ongoing Forum to Address Scalable Technology
for Operating Systems and Runtimes (FASTOS) Scalable Fault Tolerance project [130], and we plan to
demonstrate this capability in coupled cluster algorithm of NWChem. Two SciDAC Centers for Enabling
Technology [131,132] are proposing deeper investigations into fault tolerance, and we will collaborate with
them on integrating richer fault notification and response capabilities into the CCA environment through the
development of standard interfaces to proposed system-level services or fault tolerance backplanes. We will
also work with the CQoS initiative (Sec. 1.5.4) to determine how faults should be incorporated into their
analysis and tools.
Impact. This Initiative will provide CCA users with new tools that will simplify and accelerate their
development of true petascale applications on diverse hardware platforms. They will be able to flexibly and
dynamically express higher levels of parallelism, transparently take advantage of specialize co-processing
resources, and support intelligent application-level responses to the hardware failures that are inevitable on
systems of this scale.
1.5.3 Software Quality and Verification [Coordinator: T.L. Dahlgren, LLNL]
Motivation. Scientific software — especially from third-party sources — can be very complex, making
its correct use a major concern. Much of the scientific computing community relies on the most basic
specifications; namely, method signatures and documentation. Unfortunately, such documentation is often
incomplete or out of date, and cannot be automatically verified in traditional software environments. Ex-
tending interface definitions with semantic annotations, which can be automatically verified or enforced at
composition or run time, will provide the developers of scientific software with a powerful tool to help them
catch errors earlier and insure the correct use of the software.

This work is motivated by external collaborations and other activities within TASCS. Our on-going
collaborations with the TOPS [53,111] and TSTT/ITAPS [55,56,110,137] SciDAC centers on the design of
broadly applicable interfaces (Sec. 1.7) provide two examples of the types of software expected to benefit
most from interface semantics and enforcement. The CQoS Initiative (Sec. 1.5.4) has similar needs with
respect to the semantics of dynamic adaptation. Finally, more rigorous and verifiable interface contracts
are an important and valuable complement to our planned development of a standardized test harness for
semi-automatic unit testing of CCA components (Sec. 1.6.3).
Approach. This initiative focuses on interface semantics and verification for HPC scientific applications.
The expressiveness and suitability of general-purpose specification mechanisms will be investigated for au-
tomated verification and behavioral adaptation tools applied across disciplines within computational science.

Component interfaces, expressed separately from the implementation in a language such as SIDL, can
be extended with semantic information to provide concise, human-readable and machine-processable spec-
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ifications. Examples include numerical properties of parameters and return values [46, 47], constraints on
invocation sequences [138–143], restrictions on array distributions in parallel interfaces, and even specifi-
cation of units for arguments representing physical quantities. The corresponding assertions can be verified
at composition- or execution-time under the control of the component framework. Unlike traditional verifi-
cation techniques based either on post-execution comparisons with prior or analytical results or algorithm-
based fault tolerance techniques, this approach enables error detection closer to the point of failure. The
result is improved testing, debugging, and runtime monitoring of software quality.

Through our collaborations, we will identify and define relevant component characteristics and con-
straints; pursue suitable interface semantics representations; and address the use of such representations in
automated composition and runtime verification. We will build on existing work [46, 47, 144] — based on
extensions to SIDL in the form of Design by Contract annotations [145] — to integrate static semantics. We
will use the interface semantics to guide the development of component unit tests, as part of the component
test harness outlined in Sec. 1.6.3. Framework-based alternatives for the expression and use of dynamic
semantics for both runtime verification and adaptation will also be investigated. Once semantic interface
specification and verification technologies are demonstrated within the context of our motivating applica-
tions, we will use the CCA Toolkit components as the first route to bring these new capabilities to a broader
audience and roll the capabilities out to other applications.
Impact. This work, together with the development and deployment of the test harnesses of Sec. 1.6, will
provide component and application developers with powerful tools to improve the quality of their software.
It will help uncover bugs in component implementations and catch errors sooner. Furthermore, the interface
semantics of this initiative will enhance the dynamic adaptation capabilities of the CQoS infrastructure of
Sec. 1.5.4 by providing additional information for better informed decisions.
1.5.4 Computational Quality of Service and Adaptivity [Coordinator: L.C. McInnes, ANL]
Motivation. As computational science progresses towards ever more realistic multiphysics and multiscale
applications, the complexity is becoming such that no single research group can effectively select or tune
all of the components in a given application, and no single tool, solver, or solution strategy can seamlessly
span the entire spectrum efficiently. Common component interfaces enable easy access to suites of indepen-
dently developed algorithms and implementations. The challenge then becomes how to make sound choices
dynamically during runtime among the available implementations and parameters, suitably compromising
among performance, accuracy, mathematical consistency, and reliability.

We will address this challenge by developing tools for computational quality of service (CQoS) [146],
or the automatic selection and configuration of components to suit a particular computational purpose. As
further explained in [147], CQoS embodies the familiar concept of quality of service (QoS) in networking
as well as the ability to specify and manage characteristics of the application in a way that adapts to the
changing (computational) environment. Specific scientific applications that motivate this research are:
• Parallel mesh partitioning in combustion simulations: The SciDAC-funded CFRFS [76, 109] project is

developing a CCA toolkit for flame simulations using block-structured adaptive meshes, which must
be partitioned to enable parallel computing. Because no single partitioner is optimal [148], this CQoS
project aims to choose an efficient partitioner and an appropriate configuration for a given mesh [96].

• Resource management in quantum chemistry: In collaboration with the proposed SAP project led by
M. Gordon [92], we will use CQoS infrastructure to enable dynamic adaptation to available resources
(e.g., memory and time) during molecular wavefunction determination and other quantum chemical
subproblems [63]. We will also collaborate with the Emerging HPC Paradigms initiative (Sec. 1.5.2) on
adaptively using MCMD and hybrid computing paradigms in quantum chemistry simulations [88].

• Efficient solution of linear systems arising in accelerator and fusion simulations: The solution of linear
algebraic systems of equations often dominates the overall runtime of large-scale PDE-based simula-
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tions, including some phases of modeling in the proposed SciDAC application projects Accelerator
Community Code Development and Discovery [97] and Framework Application for Core-Edge Trans-
port Simulations [98]. CQoS work here focuses on the automation of appropriate choices for algorithms
and parameters of TOPS [53, 111] linear and nonlinear solver components [54].

Approach. While we expect that the logic involved in characterizing these problems and choosing appro-
priate solution strategies will be vastly different, we believe that the software infrastructure to analyze and
characterize each problem and its potential solutions as well as the software infrastructure to implement a
decision (once made by domain-specific logic) is similar and may be generalized [8, 149–151].

Analysis Infrastructure
Performance monitoring, 
problem/solution characterization, 
and performance model building

Control Infrastructure
Interpretation and execution of control laws to 
modify an application’s behavior

Performance
Databases

(historical & runtime)

Interactive Analysis 
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Figure 1.2: Overview of CQoS infrastructure.

Fig. 1.2 illustrates our vision of how CQoS
infrastructure will help to analyze, select, and
parameterize components for these motivating
applications. This diagram shows the two
main facets of our CQoS tools: (1) mea-
surement and analysis infrastructure, which
combines performance information and mod-
els from historical and runtime databases along
with interactive analysis, including statisti-
cal analysis and machine learning technology;
and (2) control infrastructure, which encom-
passes decision-making components that eval-
uate progress based on domain-specific heuris-
tics and metrics, along with services for dynamic component replacement. These two groups of CQoS tools,
which may be employed both for initially composing and configuring an application, as well as for runtime
control, are largely decoupled and interact primarily through a substitution assertion database. Preliminary
research that has led to this approach is discussed in [8, 10, 146, 150, 152].

This initiative exploits work on interface semantics in the Software Quality initiative (Sec. 1.5.3) and
relies on infrastructure under development by A. Malony and S. Shende of the University of Oregon for
performance monitoring, modeling, and analysis [153, 154]. We will also collaborate with the Performance
Engineering Research Center (PERC) [155, 156] for performance tools and the TOPS [53, 111] project for
solver components, and we will leverage relate work (e.g., [157–159]) where appropriate. A required CCA
enhancement is development of an event model that supports dynamic CQoS behavior. A key facet of
this work is development of a CQoS Testbed, including components drawn from the motivating scenarios
discussed above, to test and validate CQoS infrastructure.

Related work on adaptive software for scientific computing includes [158–174],while work on semantic
information and performance monitoring includes [138, 175–185]. Further details about motivation, related
work, and proposed CQoS research, which cannot be included here due to space constraints, are discussed
in [147].
Impact. This work will enable computational scientists to compose, substitute, and reconfigure software
so that trade-offs can be made dynamically at runtime among performance, precision, underlying models,
and reliability when choosing among available component implementations and parameters. Because we are
developing the base CQoS infrastructure to be generally useful to high-performance scientific applications,
we expect these tools to prove useful in application areas beyond those introduced above when the need
arises for dynamically selecting and parameterizing algorithms/software during runtime.

1.6 The CCA Environment [Coordinator: G. Kumfert, LLNL]
The CCA environment is the foundation that all other CCA activities presume. It includes SIDL, the lan-
guage interoperability tools, the CCA specification, the frameworks that implement the specification, and
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a host of other tools and bits that help the CCA developers and their customers work effectively. We have
subdivided this work into three main sections: core support (Sec. 1.6.1) to maintain our current capabilities,
enhancements (Sec. 1.6.2) needed to support the proposed research initiatives, and usability (Sec. 1.6.3)
improvements for our general customer base.
1.6.1 Core Tool Support and Maintenance [Coordinator: B. Allan, SNL]
Nothing in scientific computing stands still. As long as there are new compilers, new platforms, new tools,
or even new versions of any of the above, there will need to be matching effort expended on core support.
Moreover, new technical developments in the preceding Initiatives (Sec. 1.5) as well as the other activities
in this section will place new demands on our core tools. This effort ensures current capabilities in the face
of change — internal and external. Specific deliverables include maintaining current platforms (Linux, IBM
AIX, and MacOS X) and porting to additional DOE high-end platforms; on-going “help desk” support for
the core tool; updating and improving reference and developer documentation; and developing conformance
tests for the CCA specification and comprehensive integration tests for the CCA toolkit.
1.6.2 Enhancements [Coordinator: T. Epperly, LLNL]
The enhancements we propose to the CCA environment are activities of general utility, responding to needs
expressed by various applications groups, and the four Component Technology Initiatives. Enhancement
activities are individually smaller in scope and carry less technical risk than the Initiatives, and target more
fundamental capabilities of interest to a broader spectrum of CCA users.
CCA Specification. The CCA specification is intended to be extensible, making a distinction between
user’s components and a framework’s services. We plan to augment the current specification with a suite of
oft-requested services. These include a general EventService that would support both a publish/subscribe
model with rich data transfer as well as a lightweight asynchronous interrupting event model for special
cases. The currently prototypical MPIService and CommandLineServicewill be hardened and stan-
dardized. We intend to design a GuiBuilderServiceas an extension of our existing BuilderService
so that the GUI can exist as a component. We will also design and implement mechanisms for supporting
component sub-assemblies as new components, and define general mechanisms for saving and exchanging
those sub-assemblies.
Bridging CCA to Other Frameworks. Although the CCA is the foremost component approach for
HPC there are a broad range of other software environments important to scientific computing that have
component-like characteristics. These include scientific workflow systems, such as the SDM center is devel-
oping [100]; dataflow environments, such as the Visualization Tool Kit (VTK) [186]; and “domain-specific”
computational frameworks, such Cactus [187] and Earth System Modeling Framework (ESMF) [188]. For-
eign frameworks can participate in the CCA universe by a variety of means, including 1) directly by porting
modules as CCA compliant components, or 2) indirectly as CCA-like metacomponents when the behavior
of the foreign system is “close enough” to the CCA model that it can masquerade as CCA or 3) adapted
through a common distributed protocol such as Web Services.

Our first goal will be to create mechanisms for interoperability with workflow environments, such as
Kepler [189], as motivated by our collaboration with the SDM project [100]. Kepler is being used by the
CPES fusion project [102], and we envision the transition from workflow-based loose coupling to a more
direct component-based coupling as a key early step in the development of many other coupled simulations
(c.f. Sec. 1.5.1). Next, ESMF is currently being integrated into the CCSM. Because scientists both in the
DOE climate community and at the National Center for Atmospheric Research (NCAR) wish to make use
of CCA functionality, a collaboration is planned between NCAR and TASCS as part of the proposed work
to make the more generic component functionality of CCA accessible from ESMF applications. Additional
work will depend on application drivers, though interoperability with the VTK visualization environment
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is one likely target, in collaboration with the Visualization and Analytics Center for Enabling Technology
(VACET) [190].
SIDL/Babel. Incremental improvements will be in expanding the number of languages supported as well
as the palette of available types expressible in SIDL.

New languages include support for Matlab [191] and Fortran2003 [192]. For Fortran2003, this proposal
complements an existing Small Business Innovation Research (SBIR) project at Tech-X to develop the core
bindings. Under TASCS, the Babel team will handle the configuration, coordinate on testing, and provide
on-going customer support after the bindings are delivered.

The new types to be added to SIDL (and by extension every language binding that Babel supports)
present a bigger challenge. We propose to add support for C-like structs [193] – heterogeneous collections
of data passed between languages with minimal data copy for maximal performance (none between C, C++,
and Fortran2003). We also propose to add a distributed array type to SIDL, which will be sufficiently
general to allow most distributed array libraries to be used to provide the back-end functionality. Finally, we
will implement a user-extensible “typemap” facility whereby users can define special-case types that have
bindings in, say, two or three languages but are opaque types elsewhere.
1.6.3 Usability [Coordinator: C. Rasmussen, LANL]
This work is proposed in response to our experience and observations from conducting numerous tutorials
and coding camps, and working individually with users over the last five years. While we have been very
successful with our early adopters, we also learned a great deal where our technology could be made easier
for the general user.
CCA-Lite. This activity focuses on creating a tiered CCA specification, giving users the ability to eschew
full language interoperability afforded by the CCA specification in exchange for a more portable and less
complicated development system. CCA-Lite will specify C components and static linking, only, and will be
accessible from any language that can call and be called upon by C. Fortran95 will be made accessible in the
near term by the Chasm Fortran language tools project [194,195], the need for which is expected to be obvi-
ated over the next 2 years by the inclusion of the Fortran2003 standard’s BIND(C) interoperability feature
by most compilers. Lite requirements are: 1. Language interoperability between components and the CCA
framework in three major languages for scientific programming: Fortran, C, and C++; 2. The composition
of components into an application (program main) using the CCA BuilderService specification; 3.
Static linkage of the final application; 4. An automated migration path to full CCA components.

There are trade-offs between these tiers that can be seen by tracing the interactions between four distinct
entities: CCA Components, CCA Frameworks, CCA-Lite Components, and CCA-Lite Frameworks. The
user’s motivation for a pure Lite situation is simplicity: a few mainstream languages, static compilation,
minimal glue code, easy to configure, build, debug, and greater portability to bleeding-edge leadership
class machines. Lite components can work natively on a Lite-aware framework, but the interoperability
guarantee between different Lite components may be limited, and will be carefully defined. Connecting a
Lite component to a regular CCA component would be possible only with a full-fledged CCA framework
containing bridging capabilities between the two regimes. Ccaffeine, for example, already does this between
CCA components and the C++-specific “Classic” interface that predates SIDL/Babel. Similar bridging to
Lite will be added. Code generation tools and/or libraries will be created to automatically promote a Lite
component to be fully CCA compliant, providing the dynamic linking and language interoperability that
all full CCA components share. CCA-Lite is a part of our Usability portfolio because it offers this tiered
alternative that makes CCA more approachable to a wider audience.
Component Debugging and Testing. CCA is very effective and managing and hiding the complexity
of multi-language programming. Paradoxically, testing and debugging are two commonly recurring stages
of the software life cycle where those hidden details need to be exposed and managed differently. An
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application restricted to C, C++, and Fortran can be managed with a standard debugger such as TotalView
[196], gdb [197] or dbx [198]. Adding a component implemented in Python or Java in the mix mandates the
use of a combination of debuggers, all attached to the same process.

We propose to develop and document tools and techniques to make multi-language debugging practical
for application and component developers. This proposal focuses on three main approaches to improve
component debugging: extensive runtime validation (Sec. 1.5.3), automatic tracing of component method
calls [199, 200], and tools to manage the right combination of third-party debugging tools.

The compositional nature of component-based applications increases the importance, and potential, for
proper testing of individual components, without necessarily assembling them into full blown applications.
Testing of scientific codes remains a sporadic effort, due in part to the lack of test harnesses and tools
specifically tailored to the needs of scientific programmers.

We propose to develop a component test harness to facilitate the development of unit tests for CCA
components, modeled after tools such as JUnit [201] and PyUnit [202]. Together with our work on interface
semantics (Sec. 1.5.3), this will provide a comprehensive infrastructure to support user software testing and
verification.

1.7 The CCA Toolkit [Coordinator: R. Armstrong, SNL]
The purpose of this focus area is to develop and enrich the “component ecosystem” so that users of the CCA
will be able to obtain an increasing number of the components they need “off the shelf”. This work naturally
divides into four inter-related activities.
Development Tools and the CCA Base Installation. As is typical for HPC software, CCA components
are generally distributed as source code and must be properly compiled integrated into the user’s work envi-
ronment to be effective. The “CCA base installation” is the evolving set of tools, file naming conventions,
and other scaffolding that encapsulates our experience and recommendations for a uniform approach to the
development and delivery of CCA components intended to make the integration as easy as possible. Based
on experience gained with applications and the CCA tutorial, we now have a basic architecture which need
to be implemented and refined.

We will also enhance the base installation scaffolding with both commandline and IDE-based tools
to assist with the more mechanical aspects of component development, along similar conceptual lines to
“Ruby on Rails” [203]. We will develop Eclipse [50] plug-ins to act as a SIDL and CCA component
“wizard”, in close collaboration with the current and proposed work at LANL on the Eclipse Parallel Tools
Project (PTP) [204, 205].

The Toolkit and CCA tutorial (Sec. 1.8) will serve as the primary testing grounds for the CCA base
installation. The tools will be well-documented and made available to the general CCA community as well.
CCA Component Collection. The CCTTSS has begun developing a suite of components of general utility
across a broad range of scientific applications. Though it is not yet formally distributed, the Toolkit currently
contains 16 components [57] which have been contributed by their authors, and are primarily derived from
their CCA applications. We propose to complement continued acceptance of voluntary contributions with a
focused effort to add a coherent core of functionality to the Toolkit.

We will create a core toolkit comprised of a comprehensive, integrated set of utility, data, numerical, and
scientific components, many based on widely-used libraries, which will allow users to assemble complete,
if simple, scientific simulations almost entirely from the toolkit. This set of tools will facilitate rapid appli-
cation development for scientific or numerical proofs of concept and experimentation, and can also provide
valuable plug-and-play capabilities to existing HPC applications. The toolkit will create a minimal general
purpose set of components to form generic HPC simulations “out of the box” including but not limited to:
• Linear and Nonlinear Solvers. These components will be developed in collaboration with members

of the TOPS center [111] and will include linear and nonlinear algebraic solver components as well as
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access to lower-level vector-matrix operations.
• Structured and Unstructured Data Models. These components will automatically decompose data

across processors using the interfaces and implementations of the ITAPS [110] and Algorithmic and
Software Framework for Applied Partial Differential Equations (APDEC) [206] centers.

• General Purpose Utility Components. These components are generally useful for coping with the
parallel component world. These include an MCMD component (Sec. 1.5.2) for managing forms of
parallelism richer than single-program multiple-data (SPMD), an event service component that provides
system events as well as a generic event structure for communication between components, a command-
line processing component for passing arguments to components without framework intervention, and
many others. Also of general interest is a versatile parallel I/O component based on existing packages.
These utilities will be developed by the TASCS as part of this proposal.
Although some utility components and interfaces will be constructed by TASCS, most of the CCA-

specific value-added will come from automating the build and distribution of these components consistent
with the CCA base installation. The underlying functionality will be drawn from other SciDAC centers and
projects throughout the HPC community. Extensive documentation and examples will be included in the
download, following the format of the CCA Tutorial Hands-On Guide [207].

Often developers will need to insert their own code into custom components to orchestrate the toolkit
components. The toolkit will make heavy use of script-generated templates for general-purpose components
such as drivers that act as the main program in a componentized application and other conveniences that
developers commonly need.

The toolkit will also be the first testbed for the proposed technologies for the expression and enforcement
of interface semantics under the Software Quality initiative (Sec. 1.5.3), thereby providing good examples
of that utility for users not familiar to such ideas.
Community Interface Development. An important complement to the development of actual compo-
nents for the Toolkit is the definition of common interfaces which can provide interoperability across multi-
ple libraries in a community offering similar capabilities. The CCTTSS has been very successful in working
with several communities on community interface specifications [54, 56, 63] and we plan to continue and
expand this work in TASCS, and add component implementations to the Toolkit wherever possible. Specific
collaborations are planned with fusion and accelerator physics projects [97, 98, 108]
CCA Component Repository. Accessibility is a key criteria for the uptake of Toolkit components. There-
fore, we will establish a repository, providing a single reference location for users to look for component
software. We plan to use a simple approach, insuring that components can be located based on their descrip-
tion and metadata, conveniently downloaded, built, and easily integrated with other toolkit components. We
will develop a facility that identifies candidate components that satisfy CCA port dependencies, similar to,
for example, the Comprehensive Perl Archive Network (CPAN) [208] or Maven [209].

1.8 User and Application Outreach and Support [Coordinator: D.E. Bern-
holdt, ORNL]

CCA’s long-range goal is to fundamentally change how high-performance scientific software is developed
and used. Consequently, we place a strong emphasis on outreach and support activities to broaden the
awareness and adoption of CCA technology.
Application Support. These activities are an important bidirectional conduit for exchanging information
and experience. Direct interactions between CCA users and developers continues to prove highly effective in
propagating the use of CCA tools and design patterns in the wider HPC community. On the other hand, this
close application connection enables the CCA team to gather a broader range of experience with component
applications, allowing us to better serve both existing users and new adopters, and help focus our attentions
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on areas most important and valuable to application groups. This proposal directly reflects our experience
with application groups in CCTTSS.

TASCS envisions three different mechanisms to support its work with applications. First, we have built
support into our Component Technology Initiatives for the necessary level of interaction for the targeted
applications to insure that TASCS goals are achieved. Second, we have established collaborative ties to
numerous projects, with which we plan to collaborate via Scientific Application Pilots (SAPs) proposals
(Sec. ??) and through “embedding” of CCA-related activities in the application proposal. Third, we have
allocated a modest level of effort (∼1 FTE per year) to provide support for other projects. Prioritization
among opportunities will be based on the level of support required, the likelihood of contributing towards
significant advances on the scientific side, and the prospects of obtaining new experience and knowledge of
value to the wider CCA community.
User Outreach and Support. These activities are designed to assist and educate individual CCA users,
regardless of their application connections and affiliations. Foremost among those activities is the CCA
tutorial [207,210], which has been offered 20 times since 2001, including the last four Supercomputing con-
ferences (2002–2005). The tutorial educates users about components and the CCA, and helps capture and
disseminate examples of “best practices.”. We plan a major revision to the tutorial to provide more sophisti-
cated example applications, based primarily on CCA Toolkit components (Sec. 1.7), and continual updates
as we better understand the “best practices” for use of component technology in scientific computing. The
tutorial is also the initial testing ground for continuing development of the CCA base install template and
related tools (Sec. 1.6.3).

Coding camps, another user support activity, are working meetings in which a group of users and ex-
perienced CCA tool developers spend as much as a week together in the same location. They give CCA
users instant access to knowledgeable developers to assist in overcoming initial hurdles that might other-
wise require a protracted exchange of emails or phone calls. They also provide CCA developers with an
extremely valuable form of direct feedback that supplements more compressed bug reports and after-the-fact
anecdotes.

We expect to work closely with the proposed Institute for the Support of the SciDAC Software Ecosystem
(ISSSE) [211] both on software engineering processes for the CCA, and disseminating “CCA-friendly” soft-
ware engineering processes to application groups, and with support staff at major supercomputer centers to
insure that their users have the software they need available and user support questions are appropriately
addressed.
Community Outreach. Providing shared computing and information resources continues to be a cor-
nerstone of our broader community support and outreach. The cca-forum.org server maintained by
CCTTSS provides nearly 100 users with a collaborative environment for information sharing and soft-
ware development, and has inspired the development of similar “collaboration servers” for other projects,
such as [212]. We plan major renovation to both the web and software development infrastructure of
cca-forum.org as a part of this proposal. The web infrastructure will be modernized and we will greatly
expand the content. Code hosting capabilities will be updated, or migrated to other SciDAC-supported in-
frastructure [212]. Through an in-kind contribution from Indiana University, we will also have access to
a dedicated 18-processor cluster (see Sec. ?? for more information) that will be preloaded with up-to-date
CCA core tools and Toolkit components as an additional resource for community code development, debug-
ging, and general experimentation with CCA technology, even without new users needing to download and
install the CCA tools and components locally.

We plan a broad range of other community outreach activities as well. We will work with software
and hardware vendors to insure that commercial software tools (i.e., compilers, debuggers, profilers) will
work with the CCA environment. We will also work to insure that future HPC computing environments will
support component approaches and specifically the CCA by working with projects like the DOE Center for
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Programming Models for Scalable Parallel Computing [213] and the Defense Advanced Research Projects
Agency (DARPA) High-Productivity Computing Systems (HPCS) [214] efforts. Preliminary discussions
have been started between members of the Unified Parallel C (UPC) [215,216] consortium and the develop-
ers of Babel regarding interoperability between UPC and other important HPC languages. Center members
have organized and participated in workshops and symposia on HPC component technology in conjunction
with SIAM Parallel Processing and Computational Science and Engineering meetings, IPDPS, HPDC, and
other venues. Educating the next generation of computational scientists is important, and our activities in-
clude at least four completed Ph.D. dissertations [217–220] with four in progress, participation in the annual
ACTS Collection [221] workshop series, organized by Lawrence Berkeley National Laboratory (LBNL),
student internships at Labs, and the incorporation of CCA into computer science and computational science
courses at a number of universities.

1.9 Licensing, Dissemination, and the Software Life Cycle
Openness has long been a hallmark of the CCA Forum. The CCA specification is an open standard. Voting
membership in the CCA Forum is earned and maintained by participation (in person or telecommuting) in
at least two of the previous three open meetings. The core CCA tools supported by this proposal are already
available under licenses conforming to the Open Source Initiative (OSI)’s definition of open source [222].
Moreover, individual software projects within the TASCS already operate in an open fashion; employ-
ing websites, mailing lists, discussion forums, open bug tracking systems, public source code repositories,
workshops, and wikis to engage and support their users. Development of these tools is still dominated by
their institution of origin, but contributions from outside the parent institution—even outside TASCS—are
not uncommon, and will continue to be encouraged.

The “software life cycle” has a dual meaning for the CCA. On the one hand, we are working with
users to introduce CCA tools and ideas into large-scale, production scientific applications, which requires a
strong sensitivity to the life cycle of the application. In this sense, we have designed the CCA architecture
to require minimal modification of existing software, and, through our work on the usability of the CCA
environment (Sec. 1.6.3) and on the deployment of components (Sec. 1.7) will make CCA technology easier
to incorporate at the software level. On the other hand, the CCA tools themselves have a life cycle separate
from the applications that use them. Since we started from scratch in 1998, we have ample experience with
producing software which is “born” at near-production quality levels, and maintaining it for a growing user
base, sensitive to the quality of their software tools. This proposal addresses the importance of quality,
well-supported software, devoting a significant effort to the essential tasks of maintaining and supporting
the core CCA environment and porting it to the latest HPC platforms (Sec. 1.6.1). As part of this work, we
will strengthen documentation, and bug tracking/support for the tools, and bring the extensive regression
testing that has been done for Babel for several years (currently 20,000 individual tests, daily) to the other
tools.

Longer term, we can envision various models to help sustain and grow the CCA software. One possi-
bility follows the Apache and Mozilla Foundations [223, 224] by formally incorporating the CCA Forum
as a non-profit foundation to hold and manage the community’s intellectual property. Another possibility
is the Red Hat [225] business model, where for-profit companies perform maintenance and support of the
CCA and sell support contracts to paying customers. These, and other, options will be considered later in
the project, according to our success in bringing component technology into the mainstream of scientific
computing, the composition and needs of the user base, our DOE sponsors, and the TASCS team.

1.10 Team, Collaboration, and Management
The project team consists of eleven institutions: six national laboratories (ANL, LANL, LLNL, ORNL,
PNNL, and SNL), four universities (BU, IU, UMD, and UU), and a research-based company (Tech-X).
Eight of the organizations were the founding members of the CCA Forum in 1998, and constituted the team
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for the earlier SciDAC CCTTSS project (2001–2006). The three new additions to the team (BU, Tech-X, and
UMD) have been active participants in the CCA Forum for several years, and have strong collaborative ties
with the CCTTSS, including joint publications [5,90,226,227]. BU faculty members Chiu and Govindaraju
began participating in the CCA as PhD students at IU and Lewis as PI of a CCA-related DOE Early Career
Principal Investigator grant.

Though the team is large, we have a history of effective and productive collaboration stretching back,
in most cases, seven or more years, at both the institutional and individual levels. Of the more than 50
scientific papers published by the CCTTSS, more than 40% are multi-institutional, and nearly all CCTTSS
project activities have also been multi-institutional. Team members are also strong participants in the larger
CCA community, through the CCA Forum and other activities. Quarterly Forum meetings provide frequent
face-to-face interactions, and are usually accompanied by an additional half or full day of activity-specific
meetings. Remote collaboration is a routine matter for team members, who have been using a variety of
collaborative tools and resources (see Sec. ??) to work together for many years already. Tasks are typically
undertaken by a small, but multi-institutional teams.

Our approach to the management of the project recognizes both its administrative and technical aspects.
Each institution has a lead co-PI, who is responsible for administrative and site-specific matters. Technical
areas also have designated leaders, who are responsible for overseeing and coordinating the scientific work
of the project. Decisions will be made by consensus of the leadership, with the Lead PI (Bernholdt) acting
as arbiter and final decision maker as required. The Lead PI will also serve as the primary point of contact
with DOE management.

Apart from the new partners, the only significant change in the leadership from the CCTTSS to TASCS
is Bernholdt replacing Armstrong as the Lead PI of the SciDAC center, while Armstrong will continue to
chair the CCA Forum. Separating these two leadership positions helps recognize growth of the broader
CCA community and is the first step towards formalizing the Forum as an independent body with a distinct
leadership and charter.

1.11 Overview of Work Breakdown and Schedule
We have proposed a comprehensive and tightly integrated program of work designed to raise the CCA to the
next level of capability, utility, and robustness for petascale computational science. This work will be carried
out by a well-established research team, used to working together effectively across institutional borders,
and in close collaboration with a number of other SciDAC projects (current and proposed). The proposal
comprises roughly 13 FTEs per year, distributed across the eleven participating institutions according to
their involvement, resulting in a budget request of $3,989k in the first year, with increases for inflation in
subsequent years (complete details in Sec. ??).

The project is organized into four thrust areas, some of which have several sub-elements. Each major ac-
tivity has a coordinator who has responsibility for oversight of the work. Each activity is a multi-institutional
collaboration. The following tables provide a more detailed picture of the time lines and major milestones of
each Focus Area of the project, including the participating institutions. Detailed breakdowns by institution
can be found in Sec. ??.
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Table 1.1: Summary of Milestones for Component Technology Initiatives
Coordinator: L.C. McInnes, ANL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, UMD; 4.6 FTEs

Year 1 Year 2 Year 3 Years 4–5
Parallel Coupling Infrastructure Coordinator: R. Bramley, IU; Participants: ANL, IU, ORNL, SNL, UMD; 1.1 FTEs

Motivating Applications: fusion simulations
• Implement file-based
coupling.
• Develop data
management system.
• Design coupler compo-
nent.

• Develop parallel I/O
component.
• Implement coupler
component.
•Design generic data man-
agement tools.

• Develop CCA interfaces
for tightly coupled codes.
• Develop
cross-discretization
interfaces.
• Complete data manage-
ment system.

• Incorporate asynch data
sharing & concurrency.
• Apply CQoS
optimizations to coupling
assemblages.
• Extend to new applica-
tions areas.

Emerging HPC Paradigms Coordinator: J. Nieplocha, PNNL; Participants: ORNL, PNNL; 1.2 FTEs
Motivating Applications: biology and quantum chemistry simulations

• Develop multi-level
parallelism model.
• Define abstract model
for CCA hybrid apps.
• Develop a fault-tolerance
model for CCA

• Develop CCA model for
processor groups.
• Develop component
interface for hybrid
systems.
• Implement fault-resilient
Ccaffeine.

• Develop simple MCMD
programming model.
• Define hybrid interface
for Cray XD-1.
• Implement fault-
tolerance services for
components.

• Incorporate MCMD
support for heterogeneous
prog. models.
• Implement fault-tolerant,
hybrid & MCMD
application components.

Software Quality and Verification Coordinator: T.L. Dahlgren, LLNL; Participants: LLNL, ORNL; 0.6 FTEs
Motivating Applications: fusion simulations, CQoS initiative

• Identify and define
CQoS and domain-specific
semantics; assess spec.
mechanisms.
• Design method invoca-
tion sequencing constraints
enforcement.

• Develop semantics
prototype(s).
• Develop sequencing en-
forcement prototype in Ba-
bel/SIDL.

• Introduce semantic
specifications into selected
Toolkit components.
• Evaluate semantics
prototype(s).
• Evaluate sequencing en-
forcement prototype.

• Revise and evaluate
prototypes based on new,
CQoS event and
hybrid/MCMD models.

Computational Quality of Service (CQoS) Coordinator: L.C. McInnes, ANL; Participants: ANL, SNL; 1.6 FTEs
Motivating Applications: combustion, quantum chemistry, accelerator, and fusion simulations

• Populate CQoS testbed,
define metrics, perform
base experiments.
• Collect application
requirements and specify
initial CQoS API.
• Build database comp.

• Develop initial
performance models for
applications.
• Complete design of
overall CQoS strategy.
• Develop proxy port gen-
eration for CQoS usage.

• Implement application
control laws.
• Implement event-driven
version of control
infrastructure.
• Design APIs for general
analysis engines.

• Extend CQoS to MCMD
and hybrid computing
models.
• Apply CQoS tools to
parallel coupling.
• Stress test CQoS tools.

Table 1.2: Summary of Milestones for CCA Environment
Coordinator: G. Kumfert, LLNL; Participants: ANL, BU, LANL, LLNL, ORNL, SNL, UU; 4.5 FTEs
Year 1 Year 2 Year 3 Years 4–5

Core Tool Support and Maintenance Coordinator: B. Allan, SNL; Participants: ANL, LLNL, ORNL, SNL; 1.5 FTEs
←− Support helpdesk and open bugtracking. −→

←− Develop and maintain technical documentation. −→
• Port CCA software stack
to NLCF machines
• Complete CCA Confor-
mance Tests

• Automated conformance
testing for all CCA frame-
works.

• Automated integration
testing for CCA base in-
stallation, tutorial source,
and toolkit.

• Evaluate and port to
new architectures as they
emerge.

(continued)
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Table 1.2: Summary of Milestones for CCA Environment (continued)
Year 1 Year 2 Year 3 Years 4–5

Enhancements Coordinator: T. Epperly, LLNL; Participants: BU, LLNL, ORNL, SNL, UU; 2.1 FTEs
• Adopt EventService,
MPIService, and
CommandLineService into
standard.
• Demonstrate support for
BabeRMI in XCAT.
• Add distributed arrays to
SIDL/Babel.

• Adopt
GuiBuilderService into
standard.
• Demonstrate
CCA/Kepler
interoperability.
• Add structs to
SIDL/Babel.
• Add Fortran 2003
support to Babel.
• Incorporate SOAP im-
plementation module in
BabelRMI and integrate
with Proteus and XCAT.

• Finalize specification for
Component
sub-assemblies.
• Develop specification for
framework
interoperability.
• Demonstrate
CCA/ESMF
interoperability via
WebServices.
• Add Matlab support to
Babel

• Demonstrate exchange
of sub-assemblies between
two CCA Frameworks.
• Demonstrate CCA/VTK
interoperability.
• Demonstrate framework
interoperability between
CCA implementations.
• Add typemaps support to
SIDL/Babel.
• Add parallel RMI sup-
port to SIDL/Babel.

Usability Coordinator: C. Rasmussen, LANL; Participants: LANL, LLNL, ORNL, SNL; 0.9 FTEs
• Draft CCA-Lite Spec
and CCA-Lite Framework.
• Document advanced
component debugging
techniques.
• Design component test
harness.

• Demonstrate connecting
CCA-Lite components to
CCA components in
Ccaffeine.
• Deploy component test
harness.

• Demonstrate
source-to-source
conversion of CCA-Lite
component to full CCA
Component.
• Integrate SIDL
semantics enforcement
into testing methodology.
• Develop component trac-
ing tools to facilitate de-
bugging.

• Incorporate new SIDL
features (esp. structs) into
source-to-source
conversion.
• Evaluate tradeoffs in
debugging and testing
CCA-Lite vs. full CCA.
• Apply test harness to se-
lected toolkit components.

Table 1.3: Summary of Milestones for the CCA Toolkit
Coordinator: R. Armstrong, SNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X, UU; 2.2 FTEs

Year 1 Year 2 Year 3 Years 4–5
←− Design, establish and, based on user feedback, iterate and improve CCA Base Installation−→

• Design toolkit structure
and contribute initial com-
ponents to the Toolkit, and
establish web distribution
system

• Incorporate and promul-
gate Toolkit components
into CCA tutorial and out-
reach activities, improve
type and quality of the
Toolkit repertoire.

• Add to Toolkit com-
ponent improvements to
CCA architecture since
Year 1, e.g. MCMD
components, templates,
and CQoS plug-ins.

• Establish web-
based/community process
for approving/distributing
component contributions
from the community,
as user base for Toolkit
expands.

Table 1.4: Summary of Milestones for Application and User Outreach and Support
Coordinator: D.E. Bernholdt, ORNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X; 1.8 FTEs

Year 1 Year 2 Year 3 Years 4–5
←− Deliver application and user support, incl. tutorials, coding camps, etc. −→

←− Update tutorial and best practices documentation. −→
• Revamp cca-forum.
org web services.

• Revamp or migrate
cca-forum.org code
development services.
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3. Glossary of Acronyms

ANL Argonne National Laboratory

APDEC Algorithmic and Software Framework for Applied Partial Differential Equations

BU Binghamton University

CBSE component-based software engineering

CCA Common Component Architecture

CCSM Community Climate System Model

CCTTSS Center for Component Technology for Terascale Simulation Software

CFRFS Computational Facility for Reacting Flow Science

CPAN Comprehensive Perl Archive Network

CPES Center for Plasma Edge Simulations

CQoS computational quality of service

DARPA Defense Advanced Research Projects Agency

DoD Dept. of Defense

DOE Department of Energy

ESMF Earth System Modeling Framework

FASTOS Forum to Address Scalable Technology for Operating Systems and Runtimes

FPGA Field-Programmable Gate Array

FSP Fusion Simulation Project

GUI Graphical User Interface

HPC high-performance computing

HPCS High-Productivity Computing Systems

IDE Integrated Development Environment

ICS Institute for Coupling High-Performance Simulations

ISSSE Institute for the Support of the SciDAC Software Ecosystem

ITAPS Interoperable Technologies for Advanced Petascale Simulations

IU Indiana University

LANL Los Alamos National Laboratory
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LBNL Lawrence Berkeley National Laboratory

LLNL Lawrence Livermore National Laboratory

UMD University of Maryland

MCMD multiple-component multiple-data

MCT Model Coupling Toolkit

MLP Multi-Level Parallelism

MPMD multiple-program multiple-data

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NLCF National Leadership Computing Facility at ORNL

NIH National Institutes of Health

NSF National Science Foundation

ORNL Oak Ridge National Laboratory

OSI Open Source Initiative

PCI Parallel Coupling Infrastructure

PNNL Pacific Northwest National Laboratory

PTP Parallel Tools Project

PERC Performance Engineering Research Center

RMI remote method invocation

SAP Scientific Application Pilot

SBIR Small Business Innovation Research

SciDAC Scientific Discovery through Advanced Computing

SDM Scientific Data Management

SIDL Scientific Interface Definition Language

SNL Sandia National Laboratories

SPMD single-program multiple-data

SWIM Center for Simulation of Wave Interactions with Magnetohydrodynamics

TAO Toolkit for Advanced Optimization

TASCS Technology for Advanced Scientific Component Software
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Tech-X Tech-X Corporation

TOPS Terascale Optimal PDE Solvers

TSTT Terascale Software Tools and Technologies

UPC Unified Parallel C

UU University of Utah

VACET Visualization and Analytics Center for Enabling Technology

VTK Visualization Tool Kit
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A. Revised Scope of Work

Important Note

The TASCS proposal was funded at 25% less than the requested budget. This
section briefly describes how the scope of work was modified during negotiation
of the award to compensate for the reduced budget. This information applies to
the initial award, which began in July 2006. For further updates, please refer to
the latest TASCS Management Plan, available from the Lead PI.

In reducing our scope of work, we have had to pull back significantly in all aspects of the project.
In doing so, we have tried to place a stronger emphasis on the most critical ”user-facing” activities, and
reducing our targets for the Component Technology Initiatives to compensate. Many of the reductions have
been accomplished by shifting selected deliverables to future proposals and spreading out the remaining
work over a longer period.

More detailed comments follow, keyed to the relevant sections of the original proposal.

Component Technology Initiatives (Sec. 1.5, pg. 8)

Parallel Coupling Infrastructure (Sec. 1.5.1, pg. 8) Because of uncertainties in the funding of part-
ners in this highly collaborative initiative, and concerns about maintaining a critial mass with the
reduced funding, we have decided to eliminate this Initiative. The remaining effort that had been
allocated to this effort will be shift to enhancing the CCA Toolkit. This will include interfaces
and components for parallel coupling and other types of components based on how our various
collaborators fare in the funding process.

Support for Emerging HPC Hardware and Software Paradigms (Sec. 1.5.2, pg. 10) More specu-
lative aspects of this work have been dropped, and the FT-related activities have been signifi-
cantly reduced.

Software Quality and Verification (Sec. 1.5.3, pp. 11) More speculative aspects of this work have
been dropped in order to focus on the connections with the CQoS Initiative.

Computational Quality of Service (Sec. 1.5.4, pg. 12) This will be scaled back, in part, by working
with fewer external collaborators and reducing the breadth of topics within the general area of
quality of service adaptation.

CCA Environment (Sec. 1.6, pg. 13)

Core Tools and Usability (including CCA Lite) (Sec. 1.6.1 and 1.6.3, pg. 14 and 15) These two ar-
eas will suffer less of a reduction than other aspects of the proposal. Deliverables have mostly
been stretched out.

Enhancements (Sec. 1.6.2, pg. 14) Most of our reductions in this area were driven by the idea of
focusing more narrowly on the needs of our core DOE user base, eliminating tasks that would
have been quite useful to broader HPC computational science community. Examples include
Matlab bindings for Babel, interoperability between CCA frameworks and environments like
ESMF, VTK, and Cactus. Interoperability with the Kepler workflow environment, which will
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be done in collaboration with the SDM CET, remains in our plans. Other activities have been
stretched out over longer periods.

CCA Toolkit (Sec. 1.7, pg. 16) Like the Core Tools and Usability activities, the Toolkit is vitally important
to the user experience of the CCA. Therefore this area has also been cut less, and then bolstered by
the effort shifted from the PCI Initiative.

User Outreach and Applications Support (Sec. 1.8, pg. 17) Consistent with earlier guidance that we should
rely on SAPs and application funding as our primary means of interacting with applications, we have
allowed this area to be reduced. This means we will have less manpower available to help those
applications with which we do not have direct, funded connections.

The following tables update those in Sec. 1.11 (pg. 20).

Table A.1: Summary of Milestones for Component Technology Initiatives
Coordinator: L.C. McInnes, ANL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, UMD

Year 1 Year 2 Year 3 Years 4–5
Emerging HPC Paradigms Coordinator: J. Nieplocha, PNNL; Participants: ORNL, PNNL

Motivating Applications: biology and quantum chemistry simulations
• Develop multi-level
parallelism model.
•Define abstract model for
CCA hybrid apps.

• Develop CCA model for
processor groups.
• Develop component in-
terface for hybrid systems.

• Develop simple MCMD
programming model.
• Prototype hybrid inter-
face for example applica-
tion.

• Incorporate MCMD
support for heterogeneous
prog. models.
• Implement hybrid &
MCMD example applica-
tion components.

Software Quality and Verification Coordinator: T.L. Dahlgren, LLNL; Participants: LLNL, ORNL
Motivating Applications: fusion simulations, CQoS initiative

• Identify and define
CQoS and domain-specific
semantics; assess spec.
mechanisms.

• Develop semantics
prototype(s).
• Design method invoca-
tion sequencing constraints
enforcement.

• Introduce semantic
specifications into selected
Toolkit components.
• Develop sequencing en-
forcement prototype in Ba-
bel/SIDL.

• Evaluate semantics
prototype(s).
• Evaluate sequencing
enforcement prototype.
• Revise and evaluate pro-
totypes based on CQoS
evolution.

Computational Quality of Service (CQoS) Coordinator: L.C. McInnes, ANL; Participants: ANL, SNL
Motivating Applications: combustion, quantum chemistry, accelerator, and fusion simulations

• Collect application
requirements, define
metrics, perform base
experiments.
• Build database compo-
nent.

• Populate CQoS testbed
and specify initial CQoS
API.
• Develop initial
performance models for
applications.
• Develop proxy port gen-
eration for CQoS usage.

• Complete design of
overall CQoS strategy.
• Implement application
control laws.
• Implement an asyn-
chronous control infras-
tructure.

• Design APIs for general
analysis engines.
• Create a generic CQoS
framework for HPC
applications.
• Stress test CQoS tools.
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Table A.2: Summary of Milestones for CCA Environment
Coordinator: G. Kumfert, LLNL; Participants: ANL, BU, LANL, LLNL, ORNL, SNL, UU

Year 1 Year 2 Year 3 Years 4–5
Core Tool Support and Maintenance Coordinator: B. Allan, SNL; Participants: ANL, LLNL, ORNL, SNL

←− Support helpdesk and open bugtracking. −→
←− Develop and maintain technical documentation. −→

• Port CCA software stack
to NLCF machines

• Complete CCA Confor-
mance Tests

• Automated conformance
testing for all CCA frame-
works.

• Evaluate and port to
new architectures as they
emerge.

Enhancements Coordinator: T. Epperly, LLNL; Participants: BU, LLNL, ORNL, SNL, UU
• Adopt EventService and
MPIService into standard.
• Demonstrate support for
BabelRMI in XCAT.

• Demonstrate
CCA/Kepler
interoperability.
• Add structs to
SIDL/Babel.
• Add Fortran 2003
support to Babel.
• Incorporate SOAP as
module in BabelRMI, inte-
grate with Proteus/ XCAT.

• Finalize specification for
Component
sub-assemblies.
• Develop specification for
framework
interoperability.
• Release full fledged ver-
sion of XCAT.

• Demonstrate exchange
of sub-assemblies between
two CCA Frameworks.
• Demonstrate framework
interoperability between
CCA implementations.
• Extend BabelRMI com-
munication modules for
new CCA applications.

Usability Coordinator: C. Rasmussen, LANL; Participants: LANL, LLNL, ORNL, SNL
• Draft CCA-Lite Spec
and CCA-Lite Framework.
• Document advanced
component debugging
techniques.
• Design component test
harness.

• Preliminary integration
of CCA-Lite test
framework with Ccaffeine
framework.
• Deploy component test
harness.

• Demonstrate connecting
CCA-Lite components to
CCA components in
Ccaffeine.
• Integrate SIDL
semantics enforcement
into testing methodology.
• Develop component trac-
ing tools to facilitate de-
bugging.

• Demonstrate
source-to-source
conversion of CCA-Lite
component to full CCA
Component.
• Evaluate tradeoffs in
debugging and testing
CCA-Lite vs. full CCA.
• Apply test harness to se-
lected toolkit components.

Table A.3: Summary of Milestones for the CCA Toolkit
Coordinator: R. Armstrong, SNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X, UMD, UU

Year 1 Year 2 Year 3 Years 4–5
←− Design, establish and, based on user feedback, iterate and improve CCA Base Installation−→

• Design toolkit structure
and contribute initial com-
ponents to the Toolkit, and
establish web distribution
system

• Incorporate and promul-
gate Toolkit components
into CCA tutorial and out-
reach activities, improve
type and quality of the
Toolkit repertoire.

• Add to Toolkit com-
ponent improvements to
CCA architecture since
Year 1, e.g. MCMD
components, templates,
and CQoS plug-ins.

• Establish web-
based/community process
for approving/distributing
component contributions
from the community,
as user base for Toolkit
expands.
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Table A.4: Summary of Milestones for Application and User Outreach and Support
Coordinator: D.E. Bernholdt, ORNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X

Year 1 Year 2 Year 3 Years 4–5
←− Support applications in adopting and using CCA. −→

←− Deliver user support, incl. tutorials, coding camps, etc. −→
←− Update tutorial and best practices documentation. −→

• Revamp cca-forum.
org web services.

• Revamp or migrate
cca-forum.org code
development services.
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