Data and database requirements for the
meta-partitioner

Jaideep Ray
Sandia National Labs, Livermore, CA

jairay@somnet.sandia.gov



Why do we need a database?

* The meta-partitioner is really a mechanism that chooses the correct partitioner
settings {P}, given a problem (as characterized by a hierarchical mesh) which is
represented by a set of grid parameters {G}

* The meta-partitioner identifies a mapping between {G} and a small collection

(of size M) of the best partitioner settings {P} . It then tries to establish

which particular setting 1s the best.

e In order to find out what {P} _ may be from a host of {P}, we need to do

experiments (each with a different{P} & {G})and store each of the outcomes
{O}. {O} is a set of performance metrics.

— These are stored 1n a database.

- We would like to cluster them and make a model.

* Theset{ {P}, {G}, {O} } forms one database record



What are {P}, {G} and {O}?

e {P} is an object that contains 14 partitioner settings. They are:

- actual levels (boolean), good enough (€ ®), white space (€ [0,1]), bMode
(enumeration), Q (€ A), Mapping (€ [0,100]), smoothing (€ 4), growing (€ 4), mode
Bit 1, 2 and 3 (boolean), maxNRLoadImbalance (€ %), maxVirtualProc (€ A),
atomicUnit (€ 4)

* {G} 1s an object that contains 6 parameters that characterize an AMR grid. They are

— Number of levels (N), amount of refined area per level (std: :vector<double> of
length N), amount of refined area on level / normalized by the area of level [-/
(std::vector<double> of length N), number of patches per unit area normalized

by base grid size (€ ®), patch area statistics (I, 0, max, min; std: :vector<double> a
[N]), average aspect ratio of a patch (€ g)

e {0} is an object that contains 4 outcome (performance) parameters

— synchronization cost statistics, load imbalance statistics, communication cost statistics, data
migration cost statistics (1, 0, max, min; std: :vector<double> in each case).



I/O operations

e INPUT: The set { {P}, {G}, {O} } will be written simultaneously

e OUTPUT/SEARCHING

- Given {G} and {€_}, where {€_} is a tolerance, supply the top Q partitioner settings

tPhiio
* Will supply a bool comparatorG({Gl}, {G2},{¢€}) that determines if 2 grid

parameters are within {€} of each other

* Will supply a comparatorPO({P1}, {01}, {P2},{02}) which returns the better of
2 partitioner settings {P1} and {P2}

- Given {G}, {€.}, {P} and {€,}, supply the top Q {O}, along with the
corresponding {G} and {P}

* Will supply a comparatorP ({P1}, {P2},{€}) that determines if 2 partitioner
settings are within {€} of each other



