A Characterization of a
Hybrid and Dynamic
Partitioner for SAMR

Applications

Henrik Johansson, Johan Steensland

Department of Information Technology Technical report 2004-009
Uppsala University March 2004
Box 337, SE-751 05 Uppsala, Sweden ISSN 1404-3203

A Characterization of a Hybrid and Dynamic
Partitioner for SAMR Applications*

Henrik Johansson! and Johan Steensland?

L 1T, Dept of Scientific Computing, Uppsala University, Box
337, S-751 05 Uppsala, Sweden, henrikj@it.uu.se
2 Advanced
Software Research and Development, Sandia National Laboratories,
P.O. Box 969, Livermore, CA 94550, USA, jsteens@sandia.gov

Abstract. Significantly improving the scalability of large structured
adaptive mesh refinement (SAMR) applications is challenging. It requires
sophisticated capabilities for using the underlying parallel computer’s
resources in the most efficient way. This is non-trivial, since the basic
conditions for how to allocate the resources change dramatically during
run-time due to the dynamics inherent in these applications.

This report presents a first characterization of a hybrid and dynamic par-
titioner for parallel SAMR applications. Specifically, we determine opti-
mal parameter settings for trade-offs like communication vs. load balance
and speed vs. quality. The key contribution is that the characterization
enables the partitioner to respond accurately to stimuli from system and
application state, and hence adapting to various SAMR, scenarios. This
potentially reduces run-time for large SAMR applications.

Keywords: Dynamic run-time environments, structured adaptive mesh re-
finement, partitioning, load balancing.

1 Introduction

Structured adaptive mesh (SAMR) methods are being widely used for simu-
lations of physical phenomena in domains like computational fluid dynamics
[2,6,26], numerical relativity [14,28], astrophysics [1,9,21], and subsurface mod-
eling and oil reservoir simulation [39,23]. Significantly improving the scalability
of large SAMR applications is challenging. It requires sophisticated capabilities
for using the underlying parallel computer’s resources in the most efficient way.
This is non-trivial, since the basic conditions for how to allocate the resources
change dramatically during run-time due to the dynamics inherent in these ap-
plications.

Previous research has targeted execution time optimization for specific com-
binations of programming model, computer system, and application [5,40,25].
The present contribution is a part of a larger research effort [30,31,32,10,33,34]

* A shorter version of this report is submitted to Euro-Par 2004 in Pisa, Italy.

that aims to improve performance for general SAMR applications executing on
general parallel computers. The main motivation for our research is that no sin-
gle partitioning scheme performs the best for all types of SAMR applications and
systems. For a given application, the most suitable partitioning technique de-
pends on input parameters and the application’s run-time state [27,31]. Adaptive
management of these dynamic applications at run-time is necessary.The meta-
partitioner [13,12,11] provides such capabilities, by selecting and configuring
the most suitable partitioner based on the current system and application state.
Previous research has offered design, proofs-of-concepts, and evaluation of major
components.

This report goes one step further by providing a detailed study of Na-
ture+Fable[31], a core component of the meta-partitioner. Nature+Fableis a
partitioning framework, hosting a wide set of parameters. Different parameter
settings lead to different behavior. The work presented here is a characteriza-
tion of this parameter space, based on five SAMR applications with different
behavior. This characterization provides an intial basis for conclusions about
how to adapt Nature+Fableto various SAMR scenarios, by dynamic adjustment
of parameters.

2 Partitioning of SAMR Applications

2.1 Structured Adaptive Mesh Refinement

Dynamically adaptive mesh refinement (AMR) [35] methods for the numerical
solution to partial differential equations (PDE’s) [7,8,29] employ locally opti-
mal approximations, and can yield highly advantageous ratios for cost/accuracy
when compared to methods based on a static uniform mesh. These techniques
seek to improve the accuracy of the solution by dynamically refining the compu-
tational grid in regions with large local solution error. Structured adaptive mesh
refinement methods are based on uniform patch-based refinements overlaid on
a structured coarse grid, and provide an alternative to the general, unstruc-
tured AMR approach. Methods based on SAMR can lead to computationally
efficient implementations as they require uniform operations on regular arrays
and exhibit structured communication patterns. Furthermore, these methods
tend to be easier to implement and manage due to their regular structure. Dis-
tributed implementations of these methods offer the potential for accurate so-
lutions of physically realistic models of complex physical phenomena. However,
they also pose new challenges in dynamic resource allocation, data-distribution,
load-balancing, and runtime management. Critical among these is the partition-
ing of the adaptive grid hierarchy to balance load, optimize communication and
synchronization, minimize data migration costs, and maximize grid quality (e.g.
aspect ratio) and available parallelism.

For SAMR methods, dynamic adaptation is achieved by tracking regions
in the domain that require higher resolution and dynamically overlaying finer
grids on these regions. These techniques start with a coarse base grid with mini-
mum acceptable resolution that covers the entire computational domain. As the

solution progresses, regions in the domain with large solution error, requiring
additional resolution, are identified and refined. Refinement proceeds recursively
so that the refined regions requiring higher resolution are similarly tagged and
even finer grids are overlaid on these regions. The resulting grid structure is a
dynamic adaptive grid hierarchy.

Existing software infrastructures for SAMR include Paramesh [19,20], a FOR-
TRAN library for parallelization of and adding adaption to existing serial struc-
tured grid computations, SAMRAI [16,40] a C++ object-oriented framework
for implementing parallel structured adaptive mesh refinement simulations, and
GrACE [24] and CHOMBOJ3], both of which are adaptive computational and
data-management engines for enabling distributed adaptive mesh-refinement
computations on structured grids.

2.2 Partitioning SAMR Grid Hierarchies

The overall efficiency of parallel SAMR, applications is limited by the ability to
partition the underlying grid hierarchies at runtime to expose all inherent par-
allelism, minimize communication and synchronization overheads, and balance
load. A critical requirement when partitioning these adaptive grid hierarchies
is the maintenance of logical locality, both across different levels of the hierar-
chy under expansion and contraction of the adaptive grid structure, and within
partitions of grids at all levels when they are decomposed and mapped across pro-
cessors. The former enables efficient computational access to the grids and min-
imizes the parent-child (inter-level) communication overheads, while the latter
minimizes overall communication and synchronization overheads. Furthermore,
application adaptation results in grids being dynamically created, moved and
deleted at runtime, making it necessary to efficiently repartition the hierarchy
“on the fly” so that it continues to meet these goals.

Partitioners for SAMR grid hierarchies can be classified as patch-based,
domain-based, or hybrid.3

For patch-based partitioners [5,17], distribution decisions are independently
made for each newly created grid. A grid may be kept on the local processor or
entirely moved to another processor. If the grid is too large, it may be split. Grids
may also be distributed uniformly over all processors. The SAMR frameworks
SAMRALI [16,40] (based on the LPARX [4] and KeLP [15] model) fully supports
patch-based partitioning. The advantages are manageable load imbalance and
re-partitioning at re-griding could be avoided. Shortcomings inherent in patch-
based techniques are communication serialization bottlenecks, inability to exploit
available parallelism both across grids at the same level and different levels [31].

Domain-based partitioners [22,27,36,30] partition the physical domain, rather
than the grids themselves. The domain is partitioned along with all contained

3 Note that this report focuses exclusively on partitioning techniques for adaptive
structured grids. Similar classification and comparative studies for unstructured-
grid/mesh partitioning and dynamic load-balancing have been investigated in the
literature [37,38].

grids on all refinement levels. The advantages are elimination of inter-level com-
munication and better exploiting of all available parallelism. The disadvantages
are intractable load imbalance for deep hierarchies and the occurrence of “bad
cuts” leading to increased overhead costs [31].

Hybrid partitioners [22,36,18] combining patch-based and domain-based ap-
proaches, can be used for coping with the shortcomings present in these tech-
niques. They use a 2-step partitioning approach. The first step uses domain-based
techniques to generate coarse partitions, which are mapped to a group of proces-
sors. The second step uses a combination of domain and patch based techniques
to optimize the distribution of each coarse partition within its processor group.

2.3 Nature+Fable

Developed at Uppsala University, Sweden, Rutgers University, New Jersey, USA,
and Sandia National Laboratories, USA, Nature+Fable (Natural Regions +
Fractional blocking and bi-level partitioning) [31] aims to be the best possible
tool for partitioning SAMR, grid hierarchies. It hosts a variety of hybrid parti-
tioning options. All involved parts are engineered to be components of the meta-
partitioner. Thus, they offer carefully designed parameters to steer its behavior
enabling adaptation to varying partitioning requirements imposed by applica-
tions and computer systems.

Nature+Fable separates homogeneous, un-refined (Hue) and complex, re-
fined (Core) domains of the grid hierarchy and clusters refinement levels into
bi-levels [31]. A bi-level consists of two refinement levels - a partition of grid
level k together with all its superimposed refinements on the next level. The
concept of bi-levels is illustrated in Fig. 1. The Hues contain the portions of the
grid hierarchy without refinements; consequently they contain only parts of the
base grid (refinement level 0). The Cores contain the portions of the grid where
refinements are present. The Cores are separated from the Hues in a strictly
domain-based fashion, meaning that each Core contains a portion of the base
grid and all its overlaid, refined grids. Expert blocking algorithms are used for
the Hues. The Cores are subjected to a coarse partitioning, creating “easy-to-
block” bi-levels. Then the same expert algorithms operating on the Hues are
used for these bi-levels.

Nature+Fableis a hybrid partitioner with high degrees of freedom. It is equipped
with a set of parameters, allowing it to adapt to the dynamic requirements im-
posed by applications and computer systems. To fully exploit the adaptation pos-
sibilities, the parameter space must be characterized with regards to the impacts
of given parameters — or combination of parameters. Below, such a characteri-
zation is presented. It provides a basis for dynamically adapting Nature+Fableto
various SAMR scenarios, within the concept of the meta-partitioner.

3 Experimental Setup

A suite of five “real-world” SAMR application kernels [32] taken from varied
scientific and engineering domains were used for the characterization. Applica-

Bi—-level domains

- S| O |

= 3 Vo S

S i r.

S, by T

C'_DD._ """"" E """ .'.'.'.j;::::r-'-‘r-'-'-‘:::::::.:l.“" ''''''''''' E """" Leve|—gr0UpS
gl - g

S ! :

w0

Fig. 1. Four refinement levels are grouped into bi-levels. Note how the two uppermost
levels are split into two bi-levels.

tion domains include numerical relativity (Scalarwave), oil reservoir simulations
(Buckley-Leverett), and computational fluid dynamics (compressible turbulence
- Richtmyer-Meshkov). These applications demonstrate different runtime behav-
ior and adaptation patterns. The 2D (3D) applications use 5 (3) levels of factor 2
refinements in space and time. Regridding and redistribution is performed every
4 time-steps on each level.

The evaluation was performed using software that simulates the execution of
the Berger-Colella SAMR, algorithm for 32 processors. The performance of the
partitioning configuration at each regrid step was computed using a metric [31]
with the components load balance, communication, data migration, partitioning
time and number of boxes. Here, communication was measured as the sum of
the amount of inter-processor communication taken over all time-steps. Data
migration was captured by the sum of the total number of data points forced
to migrate as a result of re-partitioning, taken over all time-steps. Both com-
munication and data migration were normalized with respect to grid hierarchy
size and workload [33]. Partitioning times were measured as the time to parti-
tion an entire trace file, minus the time for the same program calling a dummy
partitioning.

Next, we turn to the Nature+Fableparameters.To isolate the effect of a given
parameter, we base our experiments on a “default setting” and let only the pa-
rameter under study deviate from it. Our study includes the following specific
items (summarized in Table 1, see [31] for a detailed description of the parame-
ters):

Quantum The parameter Q affects partitioning granularity in the blocking
step. A larger Q corresponds to a finer granularity and thus the ability to create
smaller boxes. The granularity affects load imbalance and communication. We
studied this by varying Q between 2, 4, and 6.

Mapping The mapping functionality [33] in Nature+Fablestrives to reduce
inter-level communication by assigning overlapping boxes (with respect to differ-

ent bi-levels) to the same processor. If the overlap is above a specified amount,
the mapping is deemed good enough. We compared runs without mapping with
runs with mapping and an overlap of 50 percent.

Blocking Mode Two blocking modes are available in Nature+Fable, Multi-
ple and Fractional blocking. Multiple blocking tries to achieve load balance by
creating more blocks in accordance with the idea of virtual processors. Fractional
blocking only splits a few key blocks. We studied overall quality and speed of
both blockers.

Separators
N\

White—space

Bi—level domain

i

Ny

Coarse partitions

S|9A3] JUBWAULJRY

Fig. 2. The part of a bi-level that only consists of the lower refinement level is called
white space. It is possible to turn this portion of the grid into a single-level with the
parameter WhiteSpace. In this case it is possible to construct three bi-levels and two
single-levels.

WhiteSpace The parameter whiteSpace determines how large fraction of
a bi-level coarse partition that is allowed to have only the lower level (Fig. 2).
A smaller value means that we cut the bi-levels into more boxes that are either
strictly single- or bi-level. This affects load imbalance and communication.

4 Results

Quantum Finer partitioning granularity is achieved by increasing quantum.
Finer granularity improved load balance at the expense of increased commu-
nication (Fig. 3). The gain in load balance was substantially greater than the
loss in communication. Finer granularity also implied slightly more blocks and
there seemed to be some dependance between this increase and the rise in com-
munication. A more detailed study must be conducted to fully understand the
mechanisms behind this behavior. Data migration exhibited a seemingly random
behavior, as it decreased for some applications and increased for others.
Mapping The communication was reduced with at least ten percent when
mapping was turned on (Fig. 4). The parameter succeeded in assigning boxes of

|| Parameter” Range | Exp values | Description ||

actuallevels|| on/off off Regard Core’s number
of ref. levs. instead
of max ref. levs.
goodEnough eER 20.0 Stop searching for
separators better than
whiteSpace|| €[0,1] |0.25, 0.5, 0.75, 1| White-space allowed

bMode||[FRAC/BLOCK| FRAC/BLOCK Blocking mode
Q EN 2,46 @ for FRAC
and k for MULT
Mapping|| € [0,100] 0, 50 Mapping on/off,
and overlap pct
smoothing eN 2 The smoothing factor
growing €N 2 The growing factor
mode Bit 1|| on/off off Strategy 2 on/off
mode Bit 2|| on/off on Smoothing on/off
mode Bit 3|| on/off on Connect regions on/off
maxNRLoadImb eR 0.10 Max natural region
induced load balance
maxVirtualP €N 1 Maximum number of
virtual processors
atomicUnit eEN 2 No grid side
smaller than this
allowed

Table 1. Summary of parameters in Nature+Fable. The values used in the experiments
are found in column 3

different, but overlapping, bi-levels to the same processor. The amount of data
migration was slightly increased. The extra time invested in the mapping func-
tion was smaller than expected. More research is however needed to determine
the optimal use of this parameter, e.g. by investigating the result of other values
than the ones presented here.

Blocking Mode Multiple blocking reduced migration at the expense of
longer partitioning time and more boxes (Fig. 5). The reduction of migration
was generally smaller than expected, but it was still substantial in some special
cases (e.g. RM2D). Fractional blocking was on average generating a bit less
communication, which was expected because of the smaller number of generated
boxes. The load imbalance was roughly equal.

WhiteSpace Varying the parameter whiteSpace resulted in some counter-
intuitive effects. As can be seen in Fig. 6, the impact on the 2D and 3D versions
of the BL application was different. A low amount of white space resulted in a
significant reduction of load imbalance for BL2D. The opposite was true for the
3D version (BL3D), where a larger amount of white space gave the best overall
result. It appears as the result is dependent on the individual properties of each
application, as it seems to be impossible to make any general conclusions. The

Average of All Traces BL2D BL3D

1.8 1.2 1.2
Il Avg. Boxes
1.6} | I Load Imbalance
[Migration 1 1
1.4} | EE Communication
Il Time
1.2 0.8 0.8
1
0.8 0.6 0.6
0.6
0.4 0.4
2 4 6 2 4 6 2 4 6
Quantum Quantum Quantum
RM2D SC2D SC3D
1.4 1.2 1.2
1.2
1 1
1
0.8 0.8
0.8
0.6 0.6
0.6
0.4 0.4 0.4
2 4 6 2 4 6 2 4 6
Quantum Quantum Quantum

Fig. 3. Results for Q. The scale is normalized with respect to Q=2. Note the decrease
in load imbalance for all applications.

mechanisms behind these differencies are not yet understood. Compared to load
imbalance, the effects on communication, migration and partitioning time were
less significant.

5 Conclusions and Future Work

Ultimately, the presented research strives to describe how the parameter space
relates to the general partitioning trade-offs being (1) communication vs. load
balance, (2) speed vs. overall quality, and (3) data migration. These trade-offs
constitute the basis for our classification space [34].

By varying one parameter at the time, the quality of each metric-component
could be significantly improved. Trade-off (1) was heavily influenced by Q, trade-
offs (2) and (3) by Mapping and Blocking Mode. The parameter whiteSpace
affected all metrics. We conclude that an optimal parameter setting will lead to
significant run-time reductions for arbitrary SAMR applications. The research
presented here has given valuable insight of how to adjust some of those pa-
rameters. The results also demonstrate the need for a deeper knowledge to fully
understand the behavior of each parameter.

Average of All Traces BL2D BL3D

1.2 1.2
Il Migration

[Communication 11 11

1.2/ HE Time
1 1
1 0.9 0.9
0.8 0.8
08 0.7 0.7
0.6 0.6 0.6
0.5 0.5

0 50 0 50 (o] 50
Mapping Amount (Percent) Mapping Amount (Percent) Mapping Amount (Percent)
RM2D SC2D SC3D
1.2 1.2 1.2
1.1 1.1 1.1
1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
0 50 0 50 (o] 50
Mapping Amount (Percent) Mapping Amount (Percent) Mapping Amount (Percent)

Fig. 4. Results for Mapping. The scale is normalized with respect to no Mapping. The
time is only slightly increased with Mapping turned on.

The meta-partitioner [31] is our ultimate goal and it uses application and sys-
tem state to determine the best combination of the trade-offs to decrease execu-
tion times. To function as a component of the meta-partitioner, Nature+Fable must
be able to adapt to these recommendations. Our future research task is therefore
to create an abstract classification space layer on top of the lower level function
call to Nature+Fable. This abstraction layer should conform to the classifica-
tion space described briefly above. The layer should host a front-end, providing
input in form of a point in the classification space, and a back-end that calls
Nature+Fable. In between the front and back ends, there should be an “engine”
implementing translations based on the findings of the research.

Acknowledgments

The authors thank Jaideep Ray at Sandia National Laboratories, CA, USA,
Manish Parashar and Sumir Chandra at the Center for Advanced Informa-
tion Processing, Rutgers University, NJ, USA, and Michael Thuné and Jarmo
Rantakokko at Information Technology, Uppsala University, Sweden for scientific
collaboration. Sandia is a multiprogram laboratory operated by Sandia Corpora-

Average of All Traces BL2D BL3D

6 3 35
Il Avg. Boxes
5! | B Load Imbalance 25 3
[Migration .
[Communication 25
47| B Time 2
3 2
1.5
1.5
2
1 1
1
- - 0.5 - - 0.5 - -
Fractional Multiple Fractional Multiple Fractional Multiple
RM2D SC2D SC3D
4 4 4
3.5 35 35
3 3 3
2.5 25 25
2 2 2
1.5 1.5 1.5
1 1 1
- . 0.5 - ! 0.5 - :
Fractional Multiple Fractional Multiple Fractional Multiple

Fig. 5. Results for Fractional versus Multiple blocking. The scale is normalized with
respect to Fractional blocking. Note the difference in time and number of boxes.

tion, a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94-AL85000.

References

1. The ASCI alliance. http://www.llnl.gov/asci-alliences/asci-chicago.html, Univer-
sity of Chicago, 2000.

2. The ASCI/ASAP center. http://www.carc.caltech.edu/ASAP, California Institute
of Technology, 2000.

3. CHOMBO. http://seesar.lbl.gov/anag/chombo/, NERSC, ANAG of Lawrence
Berkeley National Lab, CA, USA, 2003.

4. Scott B. Baden, Scott R. Kohn, and S. Fink. Programming with LPARX. Technical
Report, University of California, San Diego, 1994.

5. Dinshaw Balsara and Charles Norton. Highly parallel structured adaptive mesh re-
finement using language-based approaches. Journal of parallel computing, (27):37'—
70, 2001.

6. M. Berger, et al. Adaptive mesh refinement for 1-dimensional gas dynamics. Sci-
entific Computing, 17:43-47, 1983.

7. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physics, 82, 1989.

Average of All Traces BL2D BL3D

1.1 1.1 1.3
1 1
1.1
0.9 0.9 1
Il Avg. Boxes
I Load Imbalance 0.9
0.8 [Migration 0.8
[Communication 0.8
Hl Time
0.7 0.7 0.7
0.25 05 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

Allowed White Space (Fraction) Allowed White Space (Fraction) Allowed White Space (Fraction)

RM2D SC2D SC3D
1.1 1.1 1.1
1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.25 0.5 0.75 1 0.25 05 0.75 1 0.25 05 0.75 1

Allowed White Space (Fraction) Allowed White Space (Fraction) Allowed White Space (Fraction)

Fig. 6. Results for whiteSpace. The scale is normalized with respect to whiteSpace
1.00. The behavior of BL2D and BL3D is significantly different.

8. Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computational Physics, 53:484-512, 1984.

9. G. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Com-
puting in Science and Engineering, pages 46-53, 1999.

10. S. Chandra and M. Parashar. An evaluation of partitioners for parallel SAMR
applications. Lecture Notes in Computer Science, 2150:171-174, 2001. Euro-Par
2001.

11. S. Chandra, J. Steensland, and M. Parashar. An experimental study of adaptive
application sensitive partitioning strategies for SAMR applications, 2001. Research
poster presentation at Supercomputing Conference, November 2001.

12. S. Chandra, J. Steensland, M. Parashar, and J. Cummings. An experimental study
of adaptive application sensitive partitioning strategies for SAMR, applications.
Santa Fe, NM, USA, 2001.

13. Sumir Chandra. ARMaDA: a framework for adaptive application-sensitive runtime
management of dynamic applications. Master’s Thesis, Graduate School, Rutgers
University, NJ, USA, 2002.

14. Mattew W. Choptuik. Experiences with an adaptive mesh refinement algorithm
in numerical relativity. Frontiers in Numerical Relativity, pages 206-221, 1989.

15. Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Flexible communication
mechanisms for dynamic structured applications. In Proceedings of IRREGULAR
’96, 1996.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Scott Kohn. SAMRAT homepage, structured adaptive mesh refinement applications
infrastructure. http://www.llnl.gov/CASC/SAMRAI/, 1999.

Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing for structured adaptive
mesh refinement applications. In Proceedings of ICPP 2001, 2001.

Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing of SAMR applications
on distributed systems. In Proceedings of Supercomputing 2001, 2001.

Peter MacNeice. Paramesh homepage, 1999.
sdcd.gsfc.nasa.gov/ESS/macneice/paramesh /-

paramesh.html.

Peter MacNeice et al. PARAMESH: A parallel adaptive mesh refinement commu-
nity toolkit. Computer physics communications, (126):330-354, 2000.

M. Norman and G. Bryan. Cosmological adaptive mesh refinement. Numerical
Astrophysics, 1999.

M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies.
In Proceedings of the 29th Annual Hawaii International Conference on System
Sciences, 1996.

M. Parashar, J.A. Wheeler, G. Pope, K.Wang, and P. Wang. A new generation
EOS compositional reservoir simulator: Part II - framework and multiprocessing.
Proceedings of the Society of Petroleum Engineerings Reservoir Simulation Sym-
posium, Dallas, TX, June 1997.

Manish Parashar and James Browne. System engineering for high performance
computing software: The HDDA /DAGH infrastructure for implementation of par-
allel structured adaptive mesh refinement. IMA Volume on Structured Adaptive
Mesh Refinement (SAMR) Grid Methods, pages 1-18, 2000.

S.G. Parker. A component-based architecture for parallel multi-physics PDE sim-
ulations. In Proceedings of ICCS 2002, number 2331, pages 719-734. Springer
Verlag, 2002.

R. Pember, J. Bell, P. Colella, W. Crutchfield, and M. Welcome. Adaptive cartesian
grid methods for representing geometry in inviscid compressible flow, 1993. 11th
ATAA Computational Fluid Dynamics Conference, Orlando, FL, July 6-9.

Jarmo Rantakokko. Data Partitioning Methods and Parallel Block-Oriented PDE
Solvers. PhD thesis, Uppsala University, 1998.

Hawley S. and Choptuic M. Boson stars driven to the brink of black hole formation.
Physic Rev, D 62:104024, 2000.

Jeffrey Saltzman. Patched based methods for adaptive mesh refinement solutions
of partial differential equations, 1997. Lecture notes.

Johan Steensland. Domain-based partitioning for parallel SAMR applications,
2001. Licentiate thesis. Uppsala University, IT, Dept. of scientific computing.
2001-002.

Johan Steensland. Efficient partitioning of dynamic structured grid hierarchies.
PhD thesis, Uppsala University, 2002.

Johan Steensland, Sumir Chandra, and Manish Parashar. An application-centric
characterization of domain-based SFC partitioners for parallel SAMR. IEEE
Transactions on Parallel and Distributed Systems, December:1275-1289, 2002.
Johan Steensland and Jaideep Ray. A heuristic re-mapping algorithm reducing
inter-level communication in SAMR. applications. In Proceedings of The 15th
IASTED International Conference on Parallel and distributed computing and sys-
tems PDCS03, volume 2, pages 707-712. ACTA PRESS, 2003.

Johan Steensland and Jaideep Ray. A partitioner-centric classification space for
SAMR partitioning trade-offs : Part I. In Proceedings of LACSI 2003, Los Alamos
computer science symposium on CD-ROM, 2003.

35.

36.

37.

38.

39.

40.

Erlendur Steinthorsson and David Modiano. Advanced methodology for simulation
of complex flows using structured grid systems. ICOMP, 28, 1995.

M. Thuné. Partitioning strategies for composite grids. Parallel Algorithms and
Applications, 11:325-348, 1997.

N. Touheed, P. Selwood, P. Jimack, and M. Berzins. A comparison of some dynamic
load-balancing algorithms for a parallel adaptive flow solver. Journal of Parallel
Computing, 26:1535-1554, 2000.

C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning
for adaptive unstructured meshes. Journal of Parallel and Distributed Computing,
47(2):102-108, December 1997.

P. Wang, I. Yotov, T. Arbogast, C. Dawson, M. Parashar, and K. Sepehrnoori.
A new generation EOS compositional reservoir simulator: Part I - formulation
and discretization. Proceedings of the Society of Petroleum Engineerings Reservoir
Simulation Symposium, Dallas, TX, June 1997.

Andrew M. Wissink et al. Large scale parallel structured AMR calculations using
the SAMRALI framework. In proceedings of Supercomputing 2001, 2001.

Recent technical reports from the Department of Information Technology

2003-055

2003-056

2003-057

2003-058

2003-059

2003-060

2003-061
2003-062

2003-063

2003-064

2003-065

2004-001

2004-002

2004-003

2004-004

2004-005

2004-006

2004-007

2004-008

2004-009

Martin Nilsson: Rapid Solution of Parameter-Dependent Linear Systems for Electro-
magnetic Problems in the Frequency Domain

Parosh Aziz Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén: Forward
Reachability Analysis of Timed Petri Nets

Erik Berg and Erik Hagersten: Low-Overhead Spatial and Temporal Data Locality
Analysis

Erik Berg and Erik Hagersten: StatCache: A Probabilistic Approach to Efficient and
Accurate Data Locality Analysis

Jonas Persson and Lina von Sydow: Pricing European Multi-asset Options Using a
Space-time Adaptive FD-method

Pierre Flener: Realism in Project-Based Software Engineering Courses: Rewards,
Risks, and Recommendations

Lars Ferm and Per Létstedt: Space-Time Adaptive Solution of First Order PDEs

Emilio Tuosto, Bjorn Victor, and Kidane Yemane: Polyadic History-Dependent Au-
tomata for the Fusion Calculus

Michael Baldamus, Joachim Parrow, and Bjorn Victor: Spi Calculus Translated to -
Calculus Preserving May-Testing

Arnim Briger, Bertil Gustafsson, Per Lotstedt, and Jonas Nilsson: High Order Accu-
rate Solution of the Incompressible Navier-Stokes Equations

Michael Baldamus, Richard Mayr, and Gerardo Schneider: A Backward/Forward Strat-
egy for Verifying Safety Properties of Infinite-State Systems

Torsten Soderstrom, Torbjorn Wigren, and Emad Abd-Elrady: Maximum Likelihood
Modeling of Orbits of Nonlinear ODEs

Pablo Giambiagi, Gerardo Schneider, and Frank D. Valencia: On the Expressiveness
of CCS-like Calculi

Johan Elf, Per Lotstedt, and Paul Sjoberg: Problems of High Dimension in Molecular
Biology

Torbjorn Wigren: Recursive Prediction Error Identification of Nonlinear State Space
Models

Hakan Zeffer, Zoran Radovic, Oskar Grenholm, and Erik Hagersten: Evaluation, Im-
plementation and Performance of Write Permission Caching in the DSZOOM System

Henrik L6f, Markus Nordén, and Sverker Holmgren: Improving Geographical Locality
of Data for Shared Memory Implementations of PDE Solvers

Erik Nordstrom, Per Gunningberg, and Christian Tschudin: Comparison of Gateway
Forwarding Strategies in Ad hoc Networks

Par Samuelsson and Bengt Carlsson: An Integrating Linearization Method for Static
Input Nonlinearities

Henrik Johansson and Johan Steensland: A Characterization of a Hybrid and Dynamic
Partitioner for SAMR Applications

22868

March 2004
ISSN 1404-3203

UPPSALA http://www.it.uu.se/

UNIVERSITET

