Design and Implementation of a dynamic and
adaptive meta-partitioner for SAMR grid
hierarchies

Henrik Johansson

August 20, 2007

1 Introduction

Structured adaptive mesh refinement (SAMR) is used to decrease the run-time
of simulations in areas like computational fluid dynamics [3, 9], numerical rela-
tivity [8,13], astrophysics [5, 22], and hydrodynamics [19]. Simulations based on
SAMR start with a coarse and uniform grid. The grid is then recursively refined
in areas where the accuracy is too low, creating a dynamic grid hierarchy that
always conforms to the maximum acceptable error.

The dynamic resource allocation makes it necessary to repeatedly reparti-
tion and redistribute the grid hierarchy over the participating processors. For
efficient use of SAMR on parallel computers, the partitioning process must not
only take the computations and the CPU performance into account, but also
all other factors that contribute to the run-time: communication volume, syn-
chronization delays, data movement between partitions and the performance
and utilization of the interconnect. Thus, to minimize the run-time, the current
state of the application and the hardware must both be taken into account.
This is non-trivial. The basic conditions for how to allocate hardware resources
change dramatically during run-time, due to the dynamics inherent in both the
applications and the computer system.

Previous research has shown that no single partitioning algorithm is the best
choice for all conditions [29]. Instead, good-performing partitioning algorithms
need to be dynamically selected and invoked during run-time. In this work
we present the design and implementation of the meta-partitioner [14,15,31,
34], a framework that autonomously selects, configures, and invokes the best
predicted partitioning algorithm with regard to the current application and
computer state. To make the meta-partitioner user-friendly and to allow for
easier modification and expandability, it is implemented using component-based
software engineering (CBSE).

The meta-partitioner first determines a partitioning focus, computed from a
set of predictive metrics that estimate the partitioning needs of the application.
It then characterizes the physical properties of the grid and matches the grid
against stored grid characeristics. The algorithm that has the best performance
for the current combination of partitioning focus and the most similar stored
grid hierarchy is selected and invoked by the meta-partitioner.

The paper is organized as follows. In Section 2 we describe SAMR and
the most common partitioning techniques. The purpose and goal of the meta-
partitioner is discussed in Section 3 and an overview of previous work is given in
Section 4. A general discussion of the meta-partitioner design and component
based software engineering is found in Section 5. The workflow of the meta-
partitioner is introduced in Section 6 and the implementation and functionality
of the resulting components in found Section 7. We present a number of idea
for improvments in Section 8. Finally, Section 9 holds a summary together with
our conclustions.

2 Background

In this section we describe structured adaptive mesh refinement (SAMR). We
also present the most common algorithms for partitioning and distribution of
dynamic grid hierarchies.

2.1 Structured adaptive mesh refinement

For PDE solvers based on finite differences and structured grids, solution accu-
racy and run-time are dictated by grid resolution. A higher resolution generally
results in a higher accuracy but also in a longer run-time. Often, features requir-
ing additional resolution, like shocks and discontinuities, only occupy a small
part of the grid: a uniform and high resolution is then a waste of computational
resources. By increasing the resolution in critical areas, the run-time of these
PDE solvers can be decreased.

The common Berger-Colella SAMR algorithm [3] starts with a coarse struc-
tured base grid covering the entire computational domain. The resolution of
the base grid conforms to the lowest acceptable accuracy of the solution. At
regular intervals, the local computational error is estimated. Grid points with
errors larger than a given threshold are flagged for refinement. Flagged points
are clustered and overlaid with logically rectangular patches of finer, uniform
resolution. For small errors, refined patches can be removed. As the execution
progresses, grid patches are created, moved and deleted, resulting in a dynamic
grid hierarchy.

During execution, information are frequently exchanged between grid patches.
Boundary data for a refined grid patch is typically obtained from adjacent
patches or patches on the next lower level, as most patches are contained in
the interior of the computational domain. After integration, the results are pro-
jected down from finer to coarser levels. As refined patches use smaller time
steps, updating coarser level solutions increase the accuracy. Thus, data flows
both along neighboring patches and between patches on different refinement
levels.

2.2 Partitioning grid hierarchies

Efficient use of parallel SAMR typically requires that the dynamic grid hierar-
chy is repeatedly partitioned and distributed over the participating processors.
Several performance issues arise during the partitioning process. As information

:
k

cos (n X} y'

Figure 1: Example of a grid hierarchy with two levels of refinement. The grids
are skewed to reflect the characteristics of a solution.

flows in the grid hierarchy, processors need to exchange data. Intra-level com-
munication appears as grid patches are split between processors and data are
exchanged along the borders. Inter-level communication can occur for overlaid
patches when the solution is projected down to coarser levels and when a finer
patch lacks boundary data. Both types of communication can severely inhibit
parallel efficency.

A synchronization delay may occur when a processor is busy computing,
while holding data needed by other processors. Until the processor has finished
its computations, other processors might be unable to proceed as they lack data.
Synchronization delays can be severe — the time spent waiting for data can be
of the same magnitude as the actual computational time [33,7]. The number
of delays often grows as the number of processors is increased. To predict the
impact of the delays, complex and time-consuming execution models are needed.

To get optimal performance, the partitioner needs to simultaneously mini-
mize all performance inhibiting factors; data migration, load imbalance, com-
munication volumes, and synchronization delays. Typically, it is unrealistic to
search for the optimal solution [11]. Instead, the partitioner needs to trade-off
the metrics in accordance with the characteristics of the application and com-
puter. Ultimately, partition quality is determined by the resulting application
execution time.

Algorithms for partitioning SAMR hierarchies can be categorized as domain-
based, patch-based, or hybrid. For patch-based partitioners [2,18,27], the dis-

tribution decisions are made independently for each refinement level (or patch).
The SAMR frameworks SAMRAT [37, 38] and Chombo [7] supports patch-based
partitioning. Domain-based partitioners [24,26, 31, 36] partition the physical do-
main, rather than the grids themselves. The domain is partitioned along with all
contained grids on all refinement levels. Domain-based methods can be found in
the AMROC [1,9] and GrACE [25] frameworks. Hybrid partitioners [17,24,36)
combine the patch-based and domain-based approaches.

2.2.1 The patch-based approach

For the patch-based approach, the most straightforward method is to divide
each patch or level into p blocks, where p is the number of processors, and
distribute one block to each processor. Another method is to use a bin-packing
or greedy algorithm [2, 25, 38] to distribute the patches. For the partitioning to
be effective, large patches may have to be divided. Regardless of the specific
method, the partitioner can consider either patch-by-patch or level-by-level.

In theory, the patch-based approach results in perfect load balance. In prac-
tice, some load imbalance can be expected due to sub-optimal patch aspect
ratios, integer divisions and constraints on the patch size. Partitioning can be
performed incrementally, as only patches created or altered since the previous
time step need to be considered for re-partitioning. However, patch-based al-
gorithms often result in high communication volumes and communication bot-
tlenecks. The communication volume is generally increased when a patch is
subdivided into blocks to create a lower load imbalance. Communication seri-
alization bottlenecks can occur when overlaid patches are assigned to different
processors. A coarser block is typically assigned to fewer processors than a finer
block. A processor owning coarser blocks will generally need to communicate
with many processors having finer and overlaid blocks, creating communication
bottlenecks.

2.2.2 The domain-based approach

For domain-based algorithms, only the base grid is partitioned. Initially, the
workload of the refined patches are projected down onto the base grid, reducing
the problem to partitioning a single grid with heterogenous workload. The
minimum block size is determined by the size of the computational stencil on
the base grid. As the base grid stencil corresponds to many grid points on highly
refined patches, the workload of a minimum sized block can be large.

As overlaid grid blocks reside on the same processor for domain-based algo-
rithms, inter-level communication is eliminated. A complete re-partition might
be necessary when the grid hierarchy is modified. Because the computational
stencil and base grid resolution impose restrictions on subdivisions of higher
level patches, the load imbalance is often high for deep grid hierarchies. Fur-
thermore, syncronization bottlenecks are common as the division of a refinement
level generally results in parts with widely differing workloads. Another problem
with domain-based algorithms is ”bad cuts”: many and small blocks with bad
aspect ratios. These blocks occur when patches are cut in bad places, assigning
only a tiny fraction of a patch to one processor while the majority of it resides
on another processor.

2.2.3 A hybrid approach

Both patch-based and domain-based algorithms perform well under suitable
conditions, especially for simple and shallow grid hierarchies [28,34]. Unfortu-
nately, their shortcomings often make their performance unacceptable for deep
and complex hierarchies [28,29]. As a remedy, a hybrid approach can be used.
By combining strategies from both the domain-based and the patch-based ap-
proach, it is possible to design a partitioner that performs well under a wider
range of conditions.

To illustrate the hybrid approach, we describe a partitioning framework
that is used by the meta-partitioner — Nature+Fable. Key concepts in Na-
ture+Fable are separation of refined and unrefined areas of the grid and cluster-
ing of refinement levels [29]. Separation of unrefined and refined areas enables
different partitioning approaches to be applied to structurally different parts
of the grid hierarchy. Refinement levels are clustered into bi-levels. A bi-level
consists of all patches from two adjacent levels — patches from refinement level
k and the next finer level, k+ 1. If the coarser level is much larger than the finer
level, the non-overlaid area of the coarser level can be removed from a bi-level.
Each bi-level is partitioned with domain-based methods. Patch-based methods
are used for all parts of the grid that are not included in bi-levels.

To perform well under a wide range of conditions, the partitioning process in
Nature+Fable is governed by a large set of parameters. Each parameter setting
corresponds to a separate partitioning algorithm.

The hybrid partitioning algorithms arising from Nature+Fable can achieve a
lower load imbalance than domain-based algorithms since patches from at most
two refinement levels are partitioned together. Because inter-level communica-
tion only exist between bi-levels, communication volumes are generally smaller
for the hybrid algorithms than for patch-based algorithms.

Load |mbalance Ramp, 16p Communlcatlon Ramp, 16p

3X 10°
250¢ ~-- Patch-based ~- Patch-based |
— Domain-based — Domain-based ‘W;
— Hybrid 2.5/ — Hybrid it

N
o
=)

(Y
Lty ..‘ i
,wu i
| ‘;::'
: H“ uv,,/ ’
0, \Hu‘ IR ;'”M '
il ‘% L
,

PRI

-
a
=]
N

ﬂ N 1

1 I /4

‘ ’ 4 N .”. ;o \
| I
ﬂ\ ‘ ‘ ‘ | ,‘\’J‘nﬂ' K

Load imbalance (%)

=
o
=)

[

Communicated grid points (#)
-
2l

=]
&)

ﬂ

)

ooy e panacran s sasemparnmnimr ey pr e n e e o ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time step Time step
(a) Load imbalance (b) Communication

Figure 2: Load imbalance and communication for the most common partitioning
approaches. Note that the algorithms complement each other. The values for
the domain-based and the patch-based methods are from a single partitioning
algorithm, while the hybrid values are selected from over 800 algorithms [16].
The example application, Ramp, is taken from the Virtual Test Facility [35] and
it was partitioned for 16 processors.

3 The need for a meta-partitioner

During the execution of a parallel SAMR application, the grid is generally re-
peatedly repartitioned. If we only use a single algorithm for the repartitioning,
we will construct bad performing partitions for many application and computer
states [14,29]. To consistently construct good-performing partitions, a number
of important issues must be addressed.

Because of the huge range of possible application and computer states, we
need to have access to complementing partitioning algorithms that together per-
form well for all of these states. Furthermore, we must also have the capability
to select a good-performing partitioning algorithm at each repartitioning.

The three types of complementing partitioning approaches (described in Sec-
tion 2.2) have vastly different characteristics (see Figure 2). Using a patch-based
algorithm, we can achieve a low load imbalance but at the cost of a large amount
of communication. A domain-based algorithm generally results in a low amount
of communication, but at the expense of a high load imbalance. The hybrid al-
gorithms falls somewhere in between these two extremes — striking a balance
between load imbalance and communications. To construct good-performing
partitions for the full spectrum of possible application states, a partitioning tool
needs to have access to algorithms from all three of the partitioning approaches.

For computationally intensive applications, we would prefer to give prefer-
ence to algorithms that generally result in a low load imbalance. If the computer
has a slow interconnect, algorithms that typically produce a low amount of com-
munication are more attractive. Thus, before the start of a simulation, we must
also consider basic and static characteristics of both the application and the
computer system. These characteristics include the amount of computations to
update a grid point, the storage need of a grid point, and the computation and
communication capacity of the the computer system.

The current application state has a large influence on the partitioning out-
come. A certain grid hierarchy can be more or less suitable for the available
partitioning algorithms. One algorithm might perform well for deep grid hier-
archies that consist of few grid patches, while another algorithm will achieve
good results for a low number of refinement levels and many grid patches.

Finally, the current state of the computer system should be considered. If
some part of the computer is overloaded or congested, the partitioning algorithm
should be selected to decrease the negative performance issues arising from that
component.

To address the issues described above, we have proposed the development of
the meta-partitioner [14,15,31, 34]. The meta-partitioner autonomously selects,
configures, and invokes an appropriate partitioning algorithm with regard to the
current application and computer state. In the following sections, we describe
the design and implementation of the meta-partitioner.

4 Initial work

The huge range of possible application states makes it necessary for the meta-
partitioner to have access to a large number of complementing partitioning
algorithms. To our knowledge, the only partitioner with an inherent capability
of adapting to a multitude of partitioning conditions is Nature+Fable. We thus

use Nature+Fable as the basis of the meta-partitioner. However, to cover the
full partitioning spectrum, the meta-partitioner will also be complemented with
both patch-based and domain-based partitioners.

In an early evalutation of Nature+Fable [15], we manually tried to find rules
that can be used to select the partitioning algorithm. For the evaluation, we
used unpartitioned trace files containing complete grid hierarchies from four
SAMR applications. After Nature+Fable had partitioned the grid hierarchies,
the partitioned trace files were used as input to a SAMR simulator [6]. The sim-
ulator mimics the behavior of the common Berger-Colella SAMR algorithm [3]
and it computes important performance metrics like load imbalance and com-
munication volumes. For the evaluation, we selected the four parameters that
we believed had the largest impact on the partitioning outcome. For these pa-
rameters, we performed single factor experiments [] where one parameter at a
time was varied. In total, eleven hybrid partitioning algorithms were evaluated.
Because of parameter inter-dependencies and the relatively small number of
partitioning algorithms, no rules were found.

Next, a larger performance charactierization of Nature+Fable was performed.
Four advanced application from the Virtual Test Facility [9, ?] were partitioned
by approximately 800 hybrid algorithms. For each application, 8, 16, and 32
processor configurations were used. The large amount of performance data were
stored in a data base. The partitions were evaluated using an expanded ver-
sion of the simulator with the capability of also presenting an approximation
of the synchonization penalty [30] and per-processor communication volumes.
The resulting per-time step analysis of the performance can be regarded as a
proof-of-concept for the need and viability of dynamic algorithm selection.

The algorithm performance data base that resulted from the larger charac-
terization is a necessary foundation for the implementation of the MP. Without
access to its comprehensive performance data, it is impossible to implement any
viable method to choose good-performing algorithms.

5 Design considerations

Before implementing the meta-partitioner, several general and far-reaching de-
sign decisions must be made. These decisions are of great importance for the
future use and acceptance of the meta-partitioner.

The average scientific application is steadily growing, both in size and com-
plexity. Today, advanced computational problems often requires cooperation
between several research groups, each responsible for a part of the problem.
The research groups do not only need to focus on their own part, they also
need to spend increasingly more time to make the different application parts
work together. Thus, the meta-partitioner must be designed and implemented
with careful consideration of its interactions with both its users and the SAMR
software. A meta-partitioner that is restricted to a certain piece of software or
adds a lot of complexity will not be used, regardless of the effectiveness of the
selected algorithms.

Implementing the meta-partitioner as a stand-alone application can impose
difficulties for the user. If the meta-partitioner is not tailored for the SAMR
engine preferred by the user, incorporating the meta-partitioner in a simulation
might need a lot of work or even be impossible. On the other hand, adapting

the meta-partitioner to specific SAMR frameworks could be equally danger-
ous. Scientists might migrate to other SAMR engines, but migrating the meta-
partitioner to a new framework would require a lot of work. Also, if the SAMR
engine is modified, the meta-partitioner might cease to function properly.

A remedy to these problems is to use component-based software engineer-
ing (CBSE) to enable inter-operability between components developed indepen-
dently by different research groups. To construct and execute a CBSE applica-
tion, components (i.e. the meta-partitioner and a SAMR engine) are connected
through well-defined interfaces to form a single executable entity. Using the
component-based approach, the meta-partitioner can seamlessly be used and
connected to any available SAMR engine that conforms to the used CBSE spec-
ification.

5.1 The Common Component Architecture

We use the the Common Component Architecture (CCA) [4] for the imple-
mentation of the meta-partitioner. CCA is a community based CBSE initiative,
specifically targeted at the needs of parallel scientific high-performance comput-
ing. CCA presents a general, low-latency model for component inter-operability
and interaction.

A component is a basic unit of software functionality. Together, components
form an application. The components interact trough abstract interfaces called
ports that give access to the functionality of a component. A component can
provide a port, meaning that it implements the functionality expressed by the
port. The component can also use ports, meaning that it make calls through
the port to access the functionality provided by another component. A frame-
work manages and assembles the components and ports into applications. The
framework is also responsible for the execution of the application.

The components can be written in a number of languages and they can
use different parallel programming models. Existing software can be turned
into CCA components by adding a simple wrapper and a standard port. Dur-
ing the execution of an application, it is possible to add, remove and change
components. Simulations performed in fields like climate modeling, accelerator
modeling, and combustion have shown that CCA can significantly ease the de-
velopment of advanced scientific applications [21] without any negative impact
on performance.

In CCA, significant attention is given to computational quality of service
(CQoS) [20,23]. CQoS is the ability of a system to ensure that a scientific
problem is solved with the best available hardware and software resources. This
is the core of the meta-partitioner.

Using CCA, it is easy to use and incorporate the meta-partitioner into vari-
ous SAMR engines. The SAMR engines Chombo [7] and GrACE [25] are already
modified to conform to the CCA specifications.

6 The meta-partitioner workflow
To identify suitable components for the meta-partitioner, we need to consider

both its internal functionality and its external interactions with both SAMR
engines and computer systems. The design must also allow for easy expansion

and modification when new and better tools and partitioning algorithms become
available.

The components need to have carefully designed interfaces that permit in-
ternal modification without any changes to their external functionality. If we
later have to modify an interface, we might need to perform cascading and
time-consuming changes to many other components as well.

Below we present the workflow for the meta-partitioner (see Figure 3). The
workflow is divided into separate tasks that are later transformed into compo-
nents (presented in Section 7).

Transform to Both geometric only th
application features and ndy. ed
independent predicted Azl
format needs needs
AMR engine ; ; Characterize Select State and
2 Receive grid : e i
calls for hicrardh grid partitioning capabilities of
partitioning v hierarchy focus the computer
Receive and o ,. -
transfer Con.ﬁgure L Choose Match grid Hosd g.”d
o . invoke : i characteriza-
partitioned grid| \ Sy algorithm hierachy ;
hierarchy . partitioner tions
Transform to Only the
SAMR engine geometric
format features

Figure 3: The MP Workflow. The Hexagons represent operations performed
outside the meta-partitioner. The (green) boxes with smooth corners are tasks
performed by the MP. The dark grey (blue) boxes holds input data while light
grey (yellow) boxes are comments

6.1 Receive the grid hierarchy

When the SAMR engine calls for re-partitioning, the current grid hierarchy is
transfered to the meta-partitioner. SAMR engines can use different formats to
describe the grid hierarchy. To avoid being restricted to specific SAMR engines,
the grid hierarchy have to be translated into an internal grid representation.

6.2 Characterize the grid hierarchy

To select good-performing partitioning algorithms, the current state of the grid
hierarchy must be throughly and accurate characterized. For this task, we
compute two sets of metrics from the grid hierarchy.

First, we compute a set of predictive metrics that captures the general par-
titioning needs of the grid hierarchy. These metrics address issues like “is this
application state likely to result in a high load imbalance?”, “is the communica-

tion volume a major issue?”, and “is the data migration expected to be large?”.
The metrics are developed by Steensland and Ray [32, ?].

Next, we use a set of metrics that are computed from the geometric features
of the grid. This set of metrics captures the physical properties of the grid, i.e.
“how much of the grid is refined?”, “how large are the grid patches?”, and “how
many grid patches are present?” To allow for comparisions, all of the geometric
metrics are designed to be application independent.

Together, these two sets of metrics give an accurate picture of both the
physical properties and the partitioning needs of the current grid hierarchy.

6.3 Selecting a partitioning focus

Generally, no partitioning algorithm can simultaneously minimize all perfor-
mance inhibiting factors (see Section 2.2 and Figure 2). Instead, the partition-
ing effort is focused on the single factor that is expected to have the greatest
impact on the execution time.

We focus the partitioning effort on either the load balance or the synchro-
nization delays. We do not initially consider the amount of communication or
the data migration. The time needed to communicate boundary data is gener-
ally insignificant compared to the time spent on synchronization delays [35, 7).
For the data migration, we currently lack necessary performance data for the
algorithm selection step. If the need arise, we can expand the focus to include
both data migration and communication. To simplify both the determination
and the use of the focus, it is into a number of discreet levels.

We select the inital partitioning focus by analyzing static application and
computer characteristics — the computational requirements of the application
and the capabilities of the computer system. During run-time, the focus is
continuoously modified using a combination of the predictive characterization
metrics (see Section 6.2) and the current state of the computer system. To
decrease excessive focus oscillations, we use the previous focus as a starting point
and limit the maximum change in focus. To simplify the algorithm selection (see
Section 6.5), we restrict the focus to a discreet number of levels.

6.4 Matching the current grid hierachy

In every domain where non-random decisions are made, the decisions are ul-
timately based on some kind of data or knowledge. To select a partitioning
algorithm, the large number of available algorithms makes it necessary to use
performance data from previously encountered application states. This is true
regardless of the method that we use to select the algorithm (i.e. rules, neural
networks, and exhaustive searches).

For most selection methods, it is necessary to match the current application
state against stored application states for which we have collected performance
data. We use the stored application state that is most similar to the current
state as input for the selection method.

To match application states against each other, we use the geometric char-
acterization metrics (see Section 6.2). This set of metrics describe the physi-
cal properties of the grid. When grid hierarchies with resembling geometrical
properties are partitioned by the same algorithm, we expect that the resulting
partitions will have similar properties.

10

6.5 Selecting a partitioning algorithm

To select the partitioning algorithm, we use the stored application state that
is most similiar to the current application state. For this stored state and the
current partitioning focus, we select the algorithm that resulted in the best
performance.

First, we evaluate all algorithms for the stored grid hierarchy with regard
to the most performance inhibiting factor (e.g. the partitioning focus). We
consider all good-performing algorithms as candidate algorithms. From these
candidate algorithms, we select the algorithm that has the best performance
with respect to the other performance inhibiting factor (e.g. load imbalance if we
focus on synchronization, and synchronization if the focus is on load imbalance).

Using this method to select the algorithm, we will control the most perfor-
mance inhibiting factor while the impact of the other factor is kept as low as
possible. We deliberatly avoid to select the best algorithm with regard to only
the most performance inhibiting factor, as this algorithm often performs badly
for all other factors. This selection method is easy to expand if we extend the
partitioning focus to also include communication and data migration.

The algorithm selection is only dependent on the partitioning focus and
the stored application state. Because the focus is divided into discreet levels,
we can precompute the algorithm selection for all combinations of focus and
application states. During run-time, the algorithm selection is thus reduced to
fast and simple table look up. We call each combination of focus and application
for a rule.

6.6 Invoke and configure the partitioner

The selected partitioner (e.g. the partitioning algorithm) is configured and
invoked. If the available partitioners use different formats to describe the grid
hierarchy, a translation from the internal grid representation might be needed.

6.7 Transfer the partitioned grid hierarchy to the SAMR
engine

The partitioned grid hierarchy is translated from the internal representation
used by the MP into the format used by the SAMR engine. The grid hierarchy
is then transfered to the SAMR engine, which resumes computing.

7 CCA components for the meta-partitioner

To use the full potential of CCA, we analyze the workflow (see Section 6) of
meta-partitioner and divide it into a number of components. Separating the
functionality of the meta-partitioner into component allows for easy expansion
and modification, without any loss of efficiency.

It is important that the design of the components allows for all desired
features, even if these features are not implemented in the initial version of the
meta-partitioner. Below, we describe each of the proposed components. The
components, and their ports, are shown in Figure 4.

11

1
1

SAMR engines

Partitioners comPort

statePort selectPort

initPort

initPort initPort
\—-_/ Performance

Monitor

Figure 4: The CCA components. The dark (green) components are included
in the meta-partitioner. The light (blue) components are developed elsewhere,
but used in the meta-partitoner.

7.1 The core component (Core)

The Core component acts as a hub for the meta-partitioner — it is connected
to all other components. The Core controls the execution of both the meta-
partitioner and the SAMR-framework. It supplies data to the components and
receives the resulting output. The implementation of the meta-partitioner does
not require a Core-like component per se. However, it can be significantly
harder to expand and modify the meta-partitioner if the separate components
communicate directly with each other.

In principle, the task of the Core is to perform a number of function calls
and to handle all necessary data transfers. The pseudocode of the Core is Isited
in Algorithm 1. The parenthesises contain the name of component responsible
for that particular task.

7.2 Communication and translation components (CoT)

The available SAMR engines can use different formats to describe the grid hi-
erarchy. To implement an efficient and expandable meta-partitioner without

12

Algorithm 1 The Core component
CollectStaticData(Init)
ReceiveGridHierarchy(CoT)
CharaterizeHierarchy (AppState)
SelectFocus(Select)
MatchHierarchies(Select)
SelectAlgorithm(Select)
Partition(Partitioners)
ReturnGridHierarchy(CoT)

being restricted to a particular SAMR engine, it is necessary to translate the
different grid representations into a single internal format.

As the internal format for the meta-partitioner, we use the representation
developed for the DAGH/GrACE frameworks [25]. The format is listed below.
For 2D application, the z-coordinate is set to -1. The num-entry is a unique id
for each grid patch. The field owner corresponds to the id of the processor that
is assigned to a patch.

Time-step owner level num size(x,y,z) start(x,y,x) stop(x,y,z)}

After the grid hierarchy is partitioned, the CoT component translates the
hierachy back into the format used by the SAMR engine. The component also
returns the partitioned grid hierarchy to the SAMR engine. A separate CoT
component must generally be implemented for each SAMR engine. A similar
approach is used in the load balancing tool-kit Zoltan, where callback functions
translate and provide necessary mesh data [10].

To evaluate the MP without performing real simulations, we can use un-
partitioned trace files derived from actual SAMR applications (similar to the
evaluation described in Section 4). For these cases, the CoT component reads
the trace file and transfers the contained grid hierarchy to the Core component.
The partitioning functionality of the MP is independent of the source of the
grid hierarchy.

All partitioners currently used by the meta-partitioner inherently support
the DAGH/GrACE grid representation. If the MP incorporates partitioners
that use other grid representations, the CoT component will be expanded to
translate these hierachies to the DAGH/GrACE format.

7.3 Application state component (AppState)

Both the construction of rules for the algorithm selection and the matching
of application states require that the current application state is accurately
characterized. This task is performed by theAppstate component.

For the characterization of the grid hierarchy, the AppState uses two separate
sets of metrics. The first set predicts the partitioning needs of the grid hierarchy.
The second set characterizes the physical properties of the grid.

Predictive classification space (PCS)

To predict the partitioning needs, three predictive metrics are used to judge
the...

13

In previous publications the PCS was known as the PCCS (Partitioner Cen-
tric Classification Space).

Because of the high complexity involved in predicting the impact of syn-
chronization delays, it is difficult to develop an accurate synchronization metric.
However, a synchronization delay can only occur when two processors exchange
data. As a consequence, there exist a relation between synchronization delays
and the amount of communication. Even though this relation is dependent on
the properties of the grid hierachy, we can use the predictive communication
metric to estimate the impact of synchronization delays.

The geometric classification space (GCS)

The geometric classification space (GCS) captures the geometrical properties
of the grid hierarchy. These metrics can be seen as a snapshot of the physical
features of the current grid hierarchy.

For each geometric metric, a separate value is computed both for each re-
finement level and for all levels together as an aggregate. To be comparable, all
metrics are normalized with respect to either the size of the grid hierarchy or a
refinement level.

Below, we present the metrics that are currently included in the GCS. De-
peding on future performance evaluations, metrics can be added or removed.

Number of refinement levels The number of refinement levels is important
for the matching of application states. Performance predictions for appli-
cations with different number of refinement levels are less accurate than
for applications having the same number of refinement levels.

Amount of refined area This metric computes the fraction of refined area
for each refinement level, normalized with the area of the base grid.

Amount of refined area with regard to next lower level This metric
computes the ratio of the area of a refinement level, compared to the
refined area on the next lower level. A value close to one means that we
probably have sharp features in the grid hierarchy, as the size of the two
refinement levels are almost equal. If the value is small, it indicates a more
fuzzy refinement pattern.

Number of patches per area unit The number of patches, normalized with
the area of the base grid. A large number of patches can indicate a re-
finement pattern that has a circular shape, making it necessesary to use
many small patches to cover the curvature.

Average grid patch area with respect to refinement level area The av-
erage patch size, normalized with the area of the current refinement level.

Standard deviation of grid patch area The variation in patch size.

Average grid patch aspect ratio The aspect ratio is related to the circum-
ference of the patches. Large aspect ratios translate into larger circumfer-
ences and possibly more communication and synchronization delays.

Note that the term “area” should be replaced with “volume” for the 3D
versions of the metrics.
Normalization

14

Because the magnitude of the different PCS and GCS metrics can vary by
several orders, it is necessary to normalize their values to a common interval.
The meta-paritioner uses z-score normalization [12], which normalizes each met-
ric based on the mean and the standard deviation. A value v of a metric A is
normalized to v’ (in the range [0.0,1.0]) by computing

v—A

0A

where A and o4 are the mean and standard deviation of metric A. The
mean and standard deviation are computed from the stored grid hierachies and
supplied by the Init component.

The z-score normalization is useful when the actual minimum and maximum
values of the metric A is unknown, which makes it easier to later expand the
rules. Also, z-score normalization is less sensitive to outliers than many other
normalization methods [12].

7.4 Algorithm selection component (Select)

The algorithm selection component is responsible for a multitude of tasks as-
sociated with the process of selecting good-performing partitioning algorithms;
the component determines the partitoning focus, it matches the current grid hi-
erarchy against stored grid hierarchies, and it selects the partitioning algorithm
that had the best performance for the most similar grid hierarchy.

The first task for the Select component is to modify the partitioning focus.
The focus is divided into eight discreet levels, each corresponding to a rule that
shares the same name (har vi skrivit det tidigare?) (see Table 1). Initially, we
restrict the focus to load imbalance and synchronization delays. If necessary, the
focus can later be expanded to include both communication and data migration.

| Focus | Corresponding rule |

FocusSynch 1.25 | MaxSynch 125% of minSynch
FocusSynch 2 MaxSynch 200% of minSynch
FocusSynch 3 MaxSynch 300% of minSynch
FocusSynch 5 MaxSynch 500% of minSynch

FocusLB 1.2 MaxLB 120% of minL.B
FocusLB 1.5 MaxLB 150% of minL.B
FocusLB 2 MaxLB 200% of minL.B
FocusLB 3 MaxLB 300% of minL.B

Table 1: The different partitioning focuses. Note the differences between Fo-
cusSynch and FocusLB. This is due to larger variations in the performance
results for the synchronization penalty compared to the load imbalance

When the partitioning focus is modified, the previous focus is used as a
starting point. Depending on the relative differences between the current and
the previous PCS, the partitioning focus is either kept or shifted a few steps in
any direction. By using the previous focus as starting point and restriciting the
maximum the rate of change, we can avoid a widly oscillating focus. Large and
frequent changes to the focus can result in widely different partitions and hence
large amounts of data migration and poor cache memory performance.

15

The current implementation of the MP does not support modification of
focus during run-time. Instead, once the initial focus has been determined, it
remains fixed throughout the execution.

After selecting the partitioning focus, the Select component matches the
current grid hierarchy against the stored hierarchies. For the matching, we use
the geometric metrics (computed by the AppState component) and the least
square method []. The stored grid hierarchy that is most similar to the current
hierarchy is recorded.

Generally, the workload for a SAMR, application is concentrated to the high-
est refinement levels. Thus, an imbalance on a high refinement level is likely to
have a larger impact on the execution time than an imbalance on a lower level.
To giver higher precendence to levels with large workloads, the least square sum
for each refinement level is assigned a weight according to the relative workload
of that level. The aggregate metrics are given a weight corresponding to 25% of
the total workload. This method ensures that the physical properties of levels
with high workloads are given a higher priority.

During the matching step, we prefer to only compare the current hierarchy
against stored hierachies that have the same number of refinement levels. We
only use grid hierarchies with a differing number of refinement levels when we
lack performance data for hierarchies that have the same number of refinement
levels.

We assume that grid hierarchies that have similar physical properties gener-
ally also have resembling partitioning needs. During the large algorithm char-
acterization (described in Section ?7?), we stored the performance data for all
combinations of application states and partitioning algorithms in a data base.
For the stored grid hierarchy that is most similar to the current grid hierarchy,
we use this performance data to select the best performing partitioning algo-
rithm with regard to the current rule (see Section 6.5). The rules are listed and
described in Table 1. The difference in the synchronization penalty and the load
imbalance is due to a larger variation in the performance data for the synchro-
nization penalty. Because it is possible to precompute the selection rules (see
Section 6.5), we only have to do a simple table look up for the appropriate com-
bination of application state and partitioning focus. The selected partitioning
algorithm is then transfered to the Core component.

7.5 Initialization component (Init)

The Init component contains a number of important utility functions that are
used both before the start of the simulation and at each repartitioning step.
The functionality included in the Init component can generally be performed
by other components. However, to keep the components as simple as possible,
we have moved many of the utility-type tasks to the Init component.

To select an accurate partitioning focus, we need to determine static char-
acteristics for both the computer system and the SAMR, application, i.e. com-
putational capacity and communication needs (see Sections 6.3 and ??). This
information is fixed during run-time and it is collected before the start of the
execution. In the initial implementation of the MP, this information is deter-
mined before compile time. In future versions of the MP, the user will have the
ablilty to supply this information before the start of the simulation. To get the
highest possible accuracy, the data collection can be automated by performing

16

several short test runs. Once determined, the characteristic data is transfered
to the Core component.

During the grid characterization step (performed by the Appstate compo-
nent), both the predicitive and the geometrical metrics are normalized to allow
for comparisions of different grid hierarchies (see Section 7.3). For the normal-
ization process, the mean and standard deviation from all stored hierarchies are
needed. The Init component provides this data.

Before the Select component matches current grid hierarchy against stored
hierachies, the Init component reads all stored hierarchies from file and trans-
fers them to the Select component.

After the current grid hierachy has been matched against the stored hier-
archies, the Init component reads the current (precomputed) rule from file and
transfer it to the Select component.

7.6 External components

Some of the necessary functionality for the meta-partitioner are provided by
third party software. Below, we briefly describe these components.

7.6.1 SAMR engines

The meta-partitioner should naturally be connected to one or more SAMR en-
gines. To turn a SAMR engine into a CCA-component, a simple wrapper routine
must be added. If the SAMR engine cannot dump and export its current grid
hierarchy, such a capability must also be added. Instead of calling an internal
partitioning algorithm, the SAMR, should transfer the grid hierarchy to the MP
and CoT-component. These small modifications should be easy to implement.

7.6.2 Partitioning algorithm components

In earlier work, we have shown that no single partitioning algorithm is the best
choice for all application and computer states [29]. Thus, access to a collection
of complementing algorithms is of great importance for the meta-partitioner.
In the initial implementation of the meta-partitioner, we include patch-based
hybrid partitioning algorithms (see Section 2.2). Unfortunately, we currently
do not have access to a stand-alone domain-based algorithm.

We incorporate each partitioning algorithm (or partitioning framework) as
an individual component. This approach makes it easy to uppdate and to add
new algorithms.

7.6.3 Performance Monitoring Components

The performance of a partitioning algorithm can be significantly influenced by
both the computational load of the computer system and the utilization of the
interconnect. Thus, the meta-partitioner should use current performance data
from the computer system and adapt the partitioning focus to the data. The
basis for this task is the static characterisitc data collected before the start of
the simulation by the Init component.

During run-time, we plan to use existing performance measurement tools,
like the Network Weather Service (NWS) [39], to measure the load of the com-
puter. NWS monitors and dynamically predicts the performance of various

17

network and computational resources. NWS gathers readings of the instanta-
neous performance conditions and uses numerical models to generate forecasts
of what the conditions will be for a given time frame. Currently, the system has
sensors for end-to-end TCP /IP performance (bandwidth and latency), available
CPU percentage, and available non-paged memory.

By comparing the current load with the static capabilities of the computer,
we can modifiy the focus to decrease the impact of any overload component in
the computer system.

7.7 CCA ports

The different components of the meta-partitioner communicate through a num-
ber of ports, as can be seen in Figure 4. Every component, with execption of the
Core, have a provides port that gives access to the components functionality. A
component only has one provides port, even if its functionality are used by sev-
eral other components (like the Init-component). To access the functionality
of another component, the component need to have an uses port. We do not de-
scribe the ports, since the description would be a repetition of the functionality
of each components.

8 Future Work

In this report we have described our inital implementation of the meta-partitioner.
To improve the partitioning performance, we can envision a number of modifi-
cations to the meta-partitioner.

Only hybrid- and patch-based algorithms have been incorporated into the
meta-partitioner. To our knowledge, there does currently not exist any stand-
alone domain-based partitioner. For certain application states, access to a
domain-based partitioner could significantly improve the partitioning quality.

Currently, the partitioning focus remains fixed throughout the simulation.
Allowing for modification of the focus, as described in Section 6.3 and 7.4, would
tailor the partitioning effort to the needs of the current application. Also, the
partitioning focus can be expanded to include the communication and data
migration.

To determine an accurate partitioning focus, the current state of the com-
puter system should be considered. When parts of the computer are overloaded,
a larger effort need to made to decrease the impact of the overload. For this
task, we need to incorporate an external performance measurement tool.

In the initial implementation, all individual geometric metrics are given equal
weights. This is an unrealistic assumption, as some of the metrics probably
have greater impact on the matching of the application states. For an accurate
matching, we need to determine the weight for each geometric metric.

(Adapting SAMR-engines to the MP is not a part of Future Work, as this
task is separate from the MP... Thus, nothing of SAMR engines are written in
Future work)

18

9 Summary and conclusions

In this paper we presented the design and implementation of the meta-partitioner.
The meta-partitioner is a partitioning framework for parallel SAMR applications
that autonomously selects, configures, and invokes good-performing partitioning
algorithms with regard to the current application and computer state.

To make the meta-partitioner user-friendly and to allow for easy modification
and expandability, it is implemented using component-based software engineer-
ing. The meta-partitioner uses the Common Component Architecture specifi-
cation and its implementation consists of several components. Complementing
partitioning algorithms from two the three main approaches (patch-based and
hybrid) are incorporated into the meta-partitioner.

To select good-performing partitioning algorithms, the MP determines a
partitioning focus based on the predicted partitioning needs of the application.
We characterize the current state of the application with a set of geometrical
metrics that captures the physical properties of the grid hierarchy. The current
application state is matched against a large number of stored states and the
most similar stored state is recorded. Complete algorithm performance data for
this stored application state is evaluated. The best partitioning algorithm with
regard to the current partitioning foucs is selected and invoked.

By dynamically selecting and invoking good-performing partitioning algo-
rithms, the meta-partitioner will significantly help to reduce the execution time
of SAMR applications and improve their scalability.

10 Acknowledgments

The authors are grateful to Ralf Deiterding for providing the application trace
files used to evaluated the different partitioning approaches, and to Jaideep Ray
for valuable CCA help.

References

[1] AMROC - Blockstructured adaptive mesh refinement in object-oriented
C++. http://amroc.sourceforge.net/index.htm, Oct. 2006.

[2] Dinshaw Balsara and Charles Norton. Highly parallel structured adap-
tive mesh refinement using language-based approaches. Journal of Parallel
Computing, (27):37-70, 2001.

[3] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64-84, May 1989.

[4] David E. Bernholdt et al. A Component Architecture for High-Performance
Scientific Computing. International Journal of High Performance Comput-
ing Applications, 20(2):163-202, 2006.

[5] Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cos-
mology. Computing in Science and Engineering, pages 46-53, Mar-Apr
1999.

19

[6]

Sumir Chandra, Mausumi Shee, and Manish Parashar. A simulation frame-
work for evaluating the runtime characteristics of structured adaptive mesh
refinement applications. Technical Report TR-275, Center for Advanced
Information Processing, Rutgers University, 2004.

Chombo - Infrastructure for adaptive mesh refinement.
http://seesar.lbl.gov/ANAG /chombo/, Dec. 2006.

Mattew W. Choptuik. Experiences with an adaptive mesh refinement al-
gorithm in numerical relativity. Frontiers in Numerical Relativity, pages

206-221, 1989.

R. Deiterding, R. Radovitzky, L. Noels S. Mauch, J.C. Cummings, and D.I.
Meiron. A virtual test facility for the efficient simulation of solid material
response under strong shock and detonation wave loading. To appear in
Engineering with Computers, 2006.

Karen Devine et al. Design of dynamic load-balancing tools for parallel
applications. In Proceedings of the 14th international conference on Super-
computing, 2000.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete problems. In STOC ’7j: Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47-63, 1974.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques
(The Morgan Kaufmann Series in Data Management Systems). Morgan
Kaufmann, 2000.

S. Hawley and M. Choptuic M. Boson stars driven to the brink of black
hole formation. Physic Review, D 62:104024, 2000.

Henrik Johansson. Performance Characterization and Evaluation of Paral-
lel PDE Solvers. Licentiate thesis, Department of Information Technology,
Uppsala University, November 2006.

Henrik Johansson and Johan Steensland. A characterization of a hybrid and
dynamic partitioner for samr applications. Report 2004-009, Department
of Information Technology, Uppsala University, Sweden, 2004. Available at
http://www.it.uu.se/research/reports/2004-009/.

Henrik Johansson and Johan Steensland. A performance characterization
of load balancing algorithms for parallel samr applications. Report 2006-
047, Department of Information Technology, Uppsala University, Sweden,
2006. Available at http://www.it.uu.se/research/reports/2006-047/.

Zhiling Lan, Valerie E. Taylor, and Greg Bryan. Dynamic load balanc-
ing of SAMR applications on distributed systems. In Proceedings of 30th
International Conference on Parallel Processing, 2001.

Zhiling Lan, Valerie E. Taylor, and Greg Bryan. A novel dynamic load
balancing scheme for parallel systems. Journal of Parallel and Distributed
Computing, 62:1763-1781, 2002.

20

[19]

[20]

[21]

Charles L. Mader and Michael L. Gittings. Modeling the 1958 Lituya Bay
mega-tsunami, II. Science of Tsunami Hazards, 20(5):241-250, 2002.

L. Mclnnes, J. Ray, R. Armstrong, T. Dahlgren, A. Malony, B. Norris,
S. Shende, J. Kenny, and J. Steensland. Computational quality of service
for scientific CCA applications: Composition, substitution, and reconfigu-
ration. Technical Report ANL/MCS-P1326-0206, Argonne National Labo-
ratory, Feb 2006.

Lois Curfman Mclnnes et al. Parallel PDE-based simulations using the
Common Component Architecture. In Are Magnus Bruaset and Aslak
Tveito, editors, Numerical Solution of PDEs on Parallel Computers,
volume 51 of Lecture Notes in Computational Science and Engineering
(LNCSE), pages 327-384. 2006. Invited chapter, also Argonne National
Laboratory technical report ANL/MCS-P1179-0704.

M. Norman and G. Bryan. Cosmological adaptive mesh refinement. Nu-
merical Astrophysics, 1999.

Boyana Norris, Jaideep Ray, Rob Armstrong, Lois C. Mclnnes, David E.
Bernholdt, Wael R. Elwasif, Allen D. Malony, and Sameer Shende. Com-
putational quality of service for scientific components. In Proceedings of
the International Symposium on Component-Based Software Engineering
(CBSE7), volume 3054 of Lecture Notes in Computer Science, pages 264—
271, 2004.

Manish Parashar and James C. Browne. On partitioning dynamic adaptive
grid hierarchies. In Proceedings of the 29th Annual Hawaii International
Conference on System Sciences, 1996.

Manish Parashar, James C. Browne, Carter Edwards, and Kenneth
Klimkowski. A common data management infrastructure for adaptive al-
gorithms for PDE solutions. In Proceedings of Supercomputing, 1997.

Jarmo Rantakokko. A framework for partitioning structured grids with
inhomogeneous workload. Parallel Algorithms and Applications, 13:135—
151, 1998.

Jarmo Rantakokko. Partitioning strategies for structured multiblock grids.
Parallel Computing, 26(12):1661-1680, 2000.

Mausumi Shee, Samip Bhavsar, and Manish Parashar. Characterizing
the performance of dynamic distribution and load-balancing techniques for
adaptive grid hierarchies. In Proceedings IASTED International conference
of parallel and distributed computing and systems, 1999.

Johan Steensland. Efficent Partitioning of Dynamic Structured Grid Hi-
erarchies. PhD thesis, Department of Scientific Computing, Information
Technology, Uppsala University, Oct. 2002.

Johan Steensland. Irregular buffer-zone partitioning reducing synchroniza-
tion cost in SAMR. International Journal of Computational Science and
Engineering (IJCSE), 2006. Special issue, to appear.

21

[31]

Johan Steensland, Sumir Chandra, and Manish Parashar. An application-
centric characterization of domain-based SFC partitioners for paral-
lel SAMR. [IEEE Transactions on Parallel and Distributed Systems,
13(12):1275-1289, Dec 2002.

Johan Steensland and Jaideep Ray. A partitioner-centric model for samr
partitioning trade-off optimization: Part I. In Proceedings of the 4th An-
nual Symposium of the Los Alamos Computer Science Institute (LACSI04),
2003.

Johan Steensland, Jaideep Ray, Henrik Johansson, and Ralf Deiterding.
An improved bi-level algorithm for partitioning dynamic grid hierarchies.
Technical report, Sandia National Laboratories, 2006. SAND2006-2487.

Johan Steensland, Michael Thuné, Sumir Chandra, and Manish Parashar.
Characterization of domain-based partitioners for parallel samr applica-
tions. In Proceedings of the IASTED International Conference on Parallel
and Distributed Computing Systems, pages 425-430, 2000.

The Virtual Test Facility. http://www.cacr.caltech.edu/asc/wiki, Oct.
2006.

M. Thuné. Partitioning strategies for composite grids. Parallel Algorithms
and Applications, 11:325-348, 1997.

Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith,
and Noah Elliott. Large scale parallel structured AMR calculations using
the SAMRAI framework. In Proceedings of Supercomputing, 2001.

Andrew M. Wissink, David Hysom, and Richard D. Hornung. Enhancing
scalability of parallel structured AMR calculations. In Proceedings of the
17th ACM International Conference on Supercomputing, pages 336—347,
2003.

Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service:
a distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5-6):757-768, 1999.

22

