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Abstract 
 

Event services based on publish-subscribe 

architectures are well established components of 

distributed computing applications. Recently, an event 

service has been proposed as part of the Common 

Component Architecture (CCA) for high-performance 

computing applications. In this paper we describe our 

experiences investigating implementation options for 

the CCA event service that exploit interprocess 

communications mechanisms commonly used on HPC 

platforms. The aim of our work is to create an event 

service that supports the well-known software 

engineering advantages of publish-subscribe 

architectures, and provides performance levels 

approaching those achievable using more primitive 

message-passing mechanisms such as MPI.  

 

1. Introduction 
 

Event services based on publish-subscribe 

communications are well-established components of 

distributed computing applications [1]. Event services 

facilitate flexible inter-process communications of 

messages in a loosely-coupled, dynamic architecture. 

Distributed computing standards such as CORBA and 

the Java Enterprise Edition provide event services with 

the Event/Notification Service and Java Messaging 

Service respectively [2,3]. There are also many 

successfully deployed proprietary event services, each 

offering subtly different quality of service and features 

sets [4,5]. 

In 2006, an event service specification was 

proposed for the Common Component Architecture 

(CCA) [8] standard for high-performance computing 

applications. The event service is specified as a 

collection of SIDL (Scientific Interface Description 

Language) interfaces. This permits a wide design space 

of possible event service implementations that conform 

to the SIDL specification. 

An initial implementation of the CCA event service 

has been built in the SciRun scientific computing 

environment [6]. This permits events to be exchanged 

between CCA components executing in the same 

process space. The SciRun event service is essentially 

part of the CCA framework (component container) that 

supports components executing in the same address 

space on SciRun. 

In this paper we describe our initial efforts to design 

and implement a CCA-compliant event service for 

HPC applications. We explore the design alternatives 

that have been considered in order to achieve 

performance levels approaching those of more 

primitive message-passing mechanisms such as MPI. 

Specifically, we present the design and preliminary 

results from an implementation of the event service on 

the Cray XD1 platform exploiting ARMCI [7] 

communications primitives. 

 

2. Event Services 

 
Contemporary events services have their origins in 

message-oriented middleware (MOM) technologies 

developed in the 1990s by various vendors (e.g IBM’s 

MQSeries; TIBCO’s Rendezvous). Event service 

architectures are based on publish-subscribe 

communication mechanisms.  

Publish-subscribe messaging extends the basic 

MOM mechanisms to support 1 to many, many to 

many, and many to 1 style communications. Publishers 

send a single copy of a message addressed to a named 

topic. Topics are a logical name for a communications 

channel implemented by the event service. Subscribers 

listen for messages that are sent to topics that interest 

them. The event server then distributes each message 

sent on a topic to every subscriber who is listening on 

that topic. This basic scheme is depicted in Figure 1. In 

terms of software engineering, publish-subscribe has 

some attractive properties. Senders and receivers are 

decoupled, each respectively unaware of which 

applications will receive a message, and who actually 



sent the message. Each topic may also have more than 

one publisher, and the publishers may appear and 

disappear dynamically. These give considerable 

flexibility over static configuration regimes. Likewise, 

subscribers can dynamically subscribe and unsubscribe 

to a topic. Hence the subscriber set for a topic can 

change at any time, and this is transparent to the 

application code.  

The event service has the responsibility for 

managing topics, and knowing which subscribers are 

listening to which topics. It also has the responsibility 

for delivering every message sent to all active current 

subscribers, and buffering messages until subscribers 

digest them.  

In addition to basic message delivery capabilities, 

event services support a diverse set of additional 

features. These include guaranteed message delivery in 

the face of software/hardware failure, subscription to 

multiple topics using wildcarded topic names, “time-to-

live” values for messages in the server, and many more 

that space precludes us from describing.  

Due to this wide range of capabilities and close 

similarities in APIs, there is considerable overlap in 

usage scenarios between distributed event and 

messaging services. At one end of the spectrum, 

applications may use these services for communicating 

relatively small and infrequent event notifications. At 

the other end, relatively large and frequent messages 

may be transported. High quality service 

implementations strive to support all usage scenarios, 

for example [9] which efficiently supports message 

sizes from 100 bytes to 100Kbytes. Others are not 

designed for certain use cases and consequently may 

not meet performance or reliability expectations when 

their usage steps outside expected tolerances [4,5] 

 
 Figure 1 Event Service Architecture based on 

Publish-Subscribe Messaging 

 

3. CCA Event Service 
 

The proposed CCA event service comprises a 

collection of SIDL interfaces that facilitate publish-

subscribe messaging using wildcarded topics. Figure 2 

depicts a UML class diagram that represents the 

interfaces and their relationships. 
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Figure 2 CCA Event Service 

 

The key abstraction is the EventService, which 

provides methods for publishers to create Topic 

instances and subscribers to register their desire to 

receive messages from a named Topic. Subscribers 

must register an object that implements the 

EventListener interface with a Topic in order to receive 

messages asynchronously. Event receipt is triggered 

when a subscriber makes an explicit call to the 

EventService::processEvents() method. 

The initial CCA event service implementation in the 

SciRun workbench assumes event publishers and 

subscribers exist in the same process. This simplifies 

event delivery and event queue management due to all 

components sharing a virtual address space. In an 

application environment where publishers and 

subscribers must communicate across processor and 

address space boundaries and achieve high 

performance, the event service implementation 

becomes much more complex. 

 

4. HPC Event Service Design 
 

We have created a preliminary implementation of 

the CCA event service running on a distributed 

memory HPC system.  Our implementation utilizes a 

combination of messaging based on MPI and one-sided 

communication primitives based on ARMCI [7]. 

There were two main considerations driving our 

design and implementation: maintaining support for the 

interface and semantics of the draft CCA event service 

specification and achieving high performance with low 
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class Event { 
  … 
private: 
  TypeMap header; 
  TypeMap body; 
}; 

overhead on distributed memory HPC clusters.  One of 

the key design challenges we faced was maintaining the 

object-oriented nature of the CCA event service 

specification in the presence of multiple, distributed 

address spaces. 

Our implementation is based on MPI and ARMCI, 

which use a process-based mechanism for executing 

applications on an HPC cluster.  Each processor, in 

general, executes a single-threaded process launched 

from the same executable image (Single Program 

Multiple Data paradigm).  In MPI, processes are 

identified by their rank from 0 to p – 1, where p is the 

total number of processes executing the application. 

When executing our event service implementation 

on p processors, we have reserved process 0 as a 

special topic directory process.  Process 0 maintains a 

directory of all the topics that are currently being 

published on the executing application and the location 

of the event queues that are maintained by the 

publishing nodes.   

Publishing and subscribing processes communicate 

with process 0 in order to create new topics or query 

information for a topic via a simple MPI messaging 

protocol.  Currently, this protocol supports four types 

of messages: (1) Add a new topic, (2) Query a topic 

for its publisher and even queue locations, (3) Remove 

a topic from the published list or (4) Quit servicing 

requests.  Process 0 maintains an efficient mapping of 

topic names to publisher processes & event queue 

location (at that publisher process).  We exploit 

ARMCI’s ability of performing remote memory 

operations (get & put) by storing a pointer to the actual 

location of the topic’s event queue on process 0’s topic 

directory mapping. 

 

Figure 3 shows the declarations for the entries in 

process 0’s topic directory mapping.  Note that the 

eventList pointer corresponds to a memory address on 

the publisher’s address space, so it can never be 

dereferenced directly on process 0. 

Once the publisher process has received an 

acknowledgement from the topic directory process that 

a topic has been created, it does not need to interact 

any more with the topic directory process.  In fact, all 

event publishing operations are local to its address 

space. 

To minimize the need for synchronization and 

coordination between topic publishers and subscribers 

we place all published events on special ARMCI-

allocated memory areas on publishing processes.  

These memory areas are directly accessible to other 

processes through ARMCI get & put calls.  Subscribers 

to a topic can thus directly access the publishing 

process’ memory to consume events.  By allocating 

published events on the publishing process’ memory 

space, we avoid the need to synchronize the state and 

existence of buffer space on the receiving subscriber 

processes as would need to be done in a traditional 

message-based publish-subscribe implementation. 

A publisher process uses local C++ operations and 

methods to manipulate events on its local address 

space.  However, there are some restrictions on how 

objects can be laid out in memory in order to be 

accessible to remote subscriber processes using 

ARMCI get operations.  ARMCI deals with blocks of 

memory without any type semantics attached to them 

(blocks of bytes). For this reason, after an 

ARMCI_Get() operation on a subscriber process the 

data necessary to interpret the received block of bytes 

as an event object needs to be self-contained  in the 

transferred data.  That implies that any data inside an 

event object should be a primitive type (int, float, etc.), 

a fixed-sized array of primitive types or a fully 

embedded object.  Pointers and references to objects 

cannot be supported efficiently in this scheme. 

 

 

In the CCA event service, an event consists of two 

TypeMaps, a header and a body, which are mappings of 

string keys to primitive data types and arrays of 

primitive data types.  We have carefully crafted an 

implementation of these TypeMaps that meets the 

above criteria with respect to embedded objects inside 

events. The header and body are fully embedded 

instances of the TypeMap class, each having a fixed, 

compile-time constant size, while still maintaining the 

flexibility of supporting a general mapping of string 

keys to data.   

In this manner, we can support the transfer of an 

event object from publisher to subscriber in a single 

struct TopicListEntry { 
  int publisher; // publisher process ID 
  EventList *eventList; // remote pointer 
}; 
 
map<std::string, TopicListEntry> topicMap; 

Figure 3: Topic Directory Entry 

Figure 4: Embedded TypeMaps in an Event 



ARMCI_Get() operation which does not require heavy-

duty preprocessing to serialize and reconstruct complex 

data types.  Figure 4 shows the declaration for the 

Event class with its embedded TypeMaps.  Figure 5 

shows a sketch of the code used to read an event on a 

subscriber process from its remote location on the 

publisher.  It also shows that once an event has been 

copied to the subscriber’s address space, it can be 

interpreted as a regular C++ object instance without 

any preprocessing. 

 

4.1 Memory Management Issues 
 

In our design we wanted to preserve the object-

oriented nature of the draft CCA event service 

specification, while still achieving performance 

comparable to procedural message passing protocols 

such as MPI.  For this reason, we decided to implement 

publish and subscribe operations using objects 

allocated in shareable ARMCI memory areas. 

 

The allocation of shareable ARMCI memory areas 

is a relatively expensive collective operation 

(ARMCI_Malloc()) in which all processes executing 

the application must participate.  For this reason, we 

avoid allocating memory through ARMCI_Malloc() 

every time we need to allocate a shareable object.  We 

allocate a single, large chunk of memory from ARMCI 

and then use a specialized heap manager for allocate 

and deallocate sub-chunks from it.  

Our heap manager takes advantage of the fact that 

the sizes of objects that will be shared through ARMCI 

are known at compile time: events have a fixed size 

that depends only on the compile-time size of their 

constituent TypeMaps.  Other objects that are allocated 

on the ARMCI heap (list links, etc.), also have known 

sizes and are much smaller than the event objects.  

To simplify heap management and facilitate the 

creation of classes that allocate objects on the ARMCI 

heap, we created a base class named 

ARMCIAllocatable that provides specialized new() and 

delete() methods that allocate instances on the ARMCI 

heap.  Thus allocating an event object on the publisher 

that will be accessible to remote subscriber processes 

becomes simply: 

 

 Event *ev = new Event; 
 

The main limitation that our approach has is that 

any pointers or references inside an object allocated on 

the ARMCI heap must be to other objects on the 

ARMCI heap. Importantly the transfer of these objects 

to a remote address space (through ARMCI_Get() or 

ARMCI_Put()) is explicit and thus any pointer links 

must be followed explicitly.  For this reason, our Event 

objects have no links or references within them and 

have their member TypeMaps fully embedded within 

them. 

 

5. Preliminary Performance Results 
 

In order to test the performance and functionality of 

our event service implementation, we created a test 

application that executes the event service on a Cray 

XD-1 platform on different numbers of processors.  

The Cray XD-1 system is a distributed memory HPC 

cluster. On the XD-1, dual-processor AMD Opteron 

SMP nodes are connected through a high-speed 

proprietary Cray interconnect named RapidArray [10].  

Our test application initializes the event service and 

then a single publisher proceeds to publish 2500 events 

of a fixed size.  Different numbers of subscribers will 

then consume those events from the publisher’s 

memory.  The consumption of events simply counts the 

number of entries in the event’s TypeMaps.  The 

application measures the number of events that can be 

processed per second for a different number of 

subscribers. 

Figure 6 presents the number of events processed 

per second for different numbers of subscribers (1 to 

16) and for two different event sizes: small (4 KB) and 

large (50 KB).  The number of events processed per 

second ranges from 66,560 for the small event size on 

one subscriber to 954 for the large event size on 16 

subscribers.  The performance drops off as the number 

of subscribers increases due to contention on the 

memory subsystem and RapidArray network port for 

the publisher node.    

We used both processors on the Cray XD-1’s nodes 

for executing our test application. It is important to 

note that for the 50 KB event size the achieved data 

rate (size of events times the number of events/second) 

using one subscriber is 1006 MB/sec (50 KB * 20995 

char evBuf[SIZE_EVENT]; 
 
… 
 
ARMCI_Get(remotePtr, evBuf, SIZE_EVENT, 
publisher); 
 
Event *ev = reinterpret_cast<Event *>(evBuf); 
 
 
listener.processEvent(*ev); 

Figure 5: Accessing an event on a subscriber 

process 



events/second), which is comparable to the raw MPI 

bandwidth we measured for the same data size (1200 

MB/sec) between two nodes.  The event data rate 

includes the overhead in performing processing of the 

event, while the MPI data rate includes only the data 

transfer time. 
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Figure 6: Event processing rate for different 

numbers of subscribers 

 

These results indicate that our scheme which places 

the data on the publisher’s local memory to be remotely 

consumed by the subscribers requires a careful balance 

between the number of subscribers and the capability 

of the publisher to serve their requests.  However, with 

a small number of concurrent subscribers (<= 2) our 

object-oriented scheme is able to achieve high 

performance that approaches that of raw HPC message 

passing using MPI. 

 

6. Conclusions and Further Work 
 

We have demonstrated the feasibility of 

implementing a publish-subscribe based event service 

on an HPC platform, which supports high-level object-

oriented interfaces and can achieve high performance 

comparable to raw message passing using MPI.  Our 

scheme uses a pull-based strategy in which subscribers 

remotely consume events from a publisher’s memory 

which limits its scalability with higher numbers of 

concurrent subscribers. 

As future work, we plan to study alternative 

publish-subscribe schemes, such as a push-based 

strategy in which the publisher remotely places events 

onto the consumer’s memories, and other possibilities 

include taking advantage of networking techniques 

such as multicast to reduce the need for the publisher to 

individually send data to each subscriber.  Another 

possibility within a pull-based approach is to replicate 

the published data onto a set of nodes such that no 

single node becomes a bottleneck. 
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