
A High-Performance Event Service for HPC Applications

Ian Gorton, Daniel Chavarría-Miranda, Manojkumar Krishnan, Jarek Nieplocha

Applied Computer Science, Pacific Northwest National Laboratory

{ian.gorton, daniel.chavarria, manoj, jarek.nieplocha}@pnl.gov

Abstract

Event services based on publish-subscribe

architectures are well established components of

distributed computing applications. Recently, an event

service has been proposed as part of the Common

Component Architecture (CCA) for high-performance

computing applications. In this paper we describe our

experiences investigating implementation options for

the CCA event service that exploit interprocess

communications mechanisms commonly used on HPC

platforms. The aim of our work is to create an event

service that supports the well-known software

engineering advantages of publish-subscribe

architectures, and provides performance levels

approaching those achievable using more primitive

message-passing mechanisms such as MPI.

1. Introduction

Event services based on publish-subscribe

communications are well-established components of

distributed computing applications [1]. Event services

facilitate flexible inter-process communications of

messages in a loosely-coupled, dynamic architecture.

Distributed computing standards such as CORBA and

the Java Enterprise Edition provide event services with

the Event/Notification Service and Java Messaging

Service respectively [2,3]. There are also many

successfully deployed proprietary event services, each

offering subtly different quality of service and features

sets [4,5].

In 2006, an event service specification was

proposed for the Common Component Architecture

(CCA) [8] standard for high-performance computing

applications. The event service is specified as a

collection of SIDL (Scientific Interface Description

Language) interfaces. This permits a wide design space

of possible event service implementations that conform

to the SIDL specification.

An initial implementation of the CCA event service

has been built in the SciRun scientific computing

environment [6]. This permits events to be exchanged

between CCA components executing in the same

process space. The SciRun event service is essentially

part of the CCA framework (component container) that

supports components executing in the same address

space on SciRun.

In this paper we describe our initial efforts to design

and implement a CCA-compliant event service for

HPC applications. We explore the design alternatives

that have been considered in order to achieve

performance levels approaching those of more

primitive message-passing mechanisms such as MPI.

Specifically, we present the design and preliminary

results from an implementation of the event service on

the Cray XD1 platform exploiting ARMCI [7]

communications primitives.

2. Event Services

Contemporary events services have their origins in

message-oriented middleware (MOM) technologies

developed in the 1990s by various vendors (e.g IBM’s

MQSeries; TIBCO’s Rendezvous). Event service

architectures are based on publish-subscribe

communication mechanisms.

Publish-subscribe messaging extends the basic

MOM mechanisms to support 1 to many, many to

many, and many to 1 style communications. Publishers

send a single copy of a message addressed to a named

topic. Topics are a logical name for a communications

channel implemented by the event service. Subscribers

listen for messages that are sent to topics that interest

them. The event server then distributes each message

sent on a topic to every subscriber who is listening on

that topic. This basic scheme is depicted in Figure 1. In

terms of software engineering, publish-subscribe has

some attractive properties. Senders and receivers are

decoupled, each respectively unaware of which

applications will receive a message, and who actually

sent the message. Each topic may also have more than

one publisher, and the publishers may appear and

disappear dynamically. These give considerable

flexibility over static configuration regimes. Likewise,

subscribers can dynamically subscribe and unsubscribe

to a topic. Hence the subscriber set for a topic can

change at any time, and this is transparent to the

application code.

The event service has the responsibility for

managing topics, and knowing which subscribers are

listening to which topics. It also has the responsibility

for delivering every message sent to all active current

subscribers, and buffering messages until subscribers

digest them.

In addition to basic message delivery capabilities,

event services support a diverse set of additional

features. These include guaranteed message delivery in

the face of software/hardware failure, subscription to

multiple topics using wildcarded topic names, “time-to-

live” values for messages in the server, and many more

that space precludes us from describing.

Due to this wide range of capabilities and close

similarities in APIs, there is considerable overlap in

usage scenarios between distributed event and

messaging services. At one end of the spectrum,

applications may use these services for communicating

relatively small and infrequent event notifications. At

the other end, relatively large and frequent messages

may be transported. High quality service

implementations strive to support all usage scenarios,

for example [9] which efficiently supports message

sizes from 100 bytes to 100Kbytes. Others are not

designed for certain use cases and consequently may

not meet performance or reliability expectations when

their usage steps outside expected tolerances [4,5]

 Figure 1 Event Service Architecture based on

Publish-Subscribe Messaging

3. CCA Event Service

The proposed CCA event service comprises a

collection of SIDL interfaces that facilitate publish-

subscribe messaging using wildcarded topics. Figure 2

depicts a UML class diagram that represents the

interfaces and their relationships.

interface

<<SIDL>>

WildcardTopic

interface

<<SIDL>>

EventListener

Operations

processEvent():void

interface

<<SIDL>>

EventService

Operations

processEvents():void
CreateTopic():Topic
CreateWildcardTopic():WildcardTopic
getTopic():Topic
getWildcardTopic():WildcardTopic
ReleaseTopic():void
ReleaseWildcardTopic():void

interface

<<SIDL>>

Event

Operations

setHeader():void
getHeader():TypeMap
getBody():TypeMap
setBody():void

interface

<<SIDL>>

TypeMap

interface

<<SIDL>>

Topic

Operations

sendEvent():void
getTopicName():String
RegisterEventListener():void
UnRegisterEventListener():void

2

manages

*1

*

processes

Figure 2 CCA Event Service

The key abstraction is the EventService, which

provides methods for publishers to create Topic

instances and subscribers to register their desire to

receive messages from a named Topic. Subscribers

must register an object that implements the

EventListener interface with a Topic in order to receive

messages asynchronously. Event receipt is triggered

when a subscriber makes an explicit call to the

EventService::processEvents() method.

The initial CCA event service implementation in the

SciRun workbench assumes event publishers and

subscribers exist in the same process. This simplifies

event delivery and event queue management due to all

components sharing a virtual address space. In an

application environment where publishers and

subscribers must communicate across processor and

address space boundaries and achieve high

performance, the event service implementation

becomes much more complex.

4. HPC Event Service Design

We have created a preliminary implementation of

the CCA event service running on a distributed

memory HPC system. Our implementation utilizes a

combination of messaging based on MPI and one-sided

communication primitives based on ARMCI [7].

There were two main considerations driving our

design and implementation: maintaining support for the

interface and semantics of the draft CCA event service

specification and achieving high performance with low

Publisher

Subscriber

Topic

Create/

Publish

Register/

Subscribe

Subscriber

Subscriber

class Event {
 …
private:
 TypeMap header;
 TypeMap body;
};

overhead on distributed memory HPC clusters. One of

the key design challenges we faced was maintaining the

object-oriented nature of the CCA event service

specification in the presence of multiple, distributed

address spaces.

Our implementation is based on MPI and ARMCI,

which use a process-based mechanism for executing

applications on an HPC cluster. Each processor, in

general, executes a single-threaded process launched

from the same executable image (Single Program

Multiple Data paradigm). In MPI, processes are

identified by their rank from 0 to p – 1, where p is the

total number of processes executing the application.

When executing our event service implementation

on p processors, we have reserved process 0 as a

special topic directory process. Process 0 maintains a

directory of all the topics that are currently being

published on the executing application and the location

of the event queues that are maintained by the

publishing nodes.

Publishing and subscribing processes communicate

with process 0 in order to create new topics or query

information for a topic via a simple MPI messaging

protocol. Currently, this protocol supports four types

of messages: (1) Add a new topic, (2) Query a topic

for its publisher and even queue locations, (3) Remove

a topic from the published list or (4) Quit servicing

requests. Process 0 maintains an efficient mapping of

topic names to publisher processes & event queue

location (at that publisher process). We exploit

ARMCI’s ability of performing remote memory

operations (get & put) by storing a pointer to the actual

location of the topic’s event queue on process 0’s topic

directory mapping.

Figure 3 shows the declarations for the entries in

process 0’s topic directory mapping. Note that the

eventList pointer corresponds to a memory address on

the publisher’s address space, so it can never be

dereferenced directly on process 0.

Once the publisher process has received an

acknowledgement from the topic directory process that

a topic has been created, it does not need to interact

any more with the topic directory process. In fact, all

event publishing operations are local to its address

space.

To minimize the need for synchronization and

coordination between topic publishers and subscribers

we place all published events on special ARMCI-

allocated memory areas on publishing processes.

These memory areas are directly accessible to other

processes through ARMCI get & put calls. Subscribers

to a topic can thus directly access the publishing

process’ memory to consume events. By allocating

published events on the publishing process’ memory

space, we avoid the need to synchronize the state and

existence of buffer space on the receiving subscriber

processes as would need to be done in a traditional

message-based publish-subscribe implementation.

A publisher process uses local C++ operations and

methods to manipulate events on its local address

space. However, there are some restrictions on how

objects can be laid out in memory in order to be

accessible to remote subscriber processes using

ARMCI get operations. ARMCI deals with blocks of

memory without any type semantics attached to them

(blocks of bytes). For this reason, after an

ARMCI_Get() operation on a subscriber process the

data necessary to interpret the received block of bytes

as an event object needs to be self-contained in the

transferred data. That implies that any data inside an

event object should be a primitive type (int, float, etc.),

a fixed-sized array of primitive types or a fully

embedded object. Pointers and references to objects

cannot be supported efficiently in this scheme.

In the CCA event service, an event consists of two

TypeMaps, a header and a body, which are mappings of

string keys to primitive data types and arrays of

primitive data types. We have carefully crafted an

implementation of these TypeMaps that meets the

above criteria with respect to embedded objects inside

events. The header and body are fully embedded

instances of the TypeMap class, each having a fixed,

compile-time constant size, while still maintaining the

flexibility of supporting a general mapping of string

keys to data.

In this manner, we can support the transfer of an

event object from publisher to subscriber in a single

struct TopicListEntry {
 int publisher; // publisher process ID
 EventList *eventList; // remote pointer
};

map<std::string, TopicListEntry> topicMap;

Figure 3: Topic Directory Entry

Figure 4: Embedded TypeMaps in an Event

ARMCI_Get() operation which does not require heavy-

duty preprocessing to serialize and reconstruct complex

data types. Figure 4 shows the declaration for the

Event class with its embedded TypeMaps. Figure 5

shows a sketch of the code used to read an event on a

subscriber process from its remote location on the

publisher. It also shows that once an event has been

copied to the subscriber’s address space, it can be

interpreted as a regular C++ object instance without

any preprocessing.

4.1 Memory Management Issues

In our design we wanted to preserve the object-

oriented nature of the draft CCA event service

specification, while still achieving performance

comparable to procedural message passing protocols

such as MPI. For this reason, we decided to implement

publish and subscribe operations using objects

allocated in shareable ARMCI memory areas.

The allocation of shareable ARMCI memory areas

is a relatively expensive collective operation

(ARMCI_Malloc()) in which all processes executing

the application must participate. For this reason, we

avoid allocating memory through ARMCI_Malloc()

every time we need to allocate a shareable object. We

allocate a single, large chunk of memory from ARMCI

and then use a specialized heap manager for allocate

and deallocate sub-chunks from it.

Our heap manager takes advantage of the fact that

the sizes of objects that will be shared through ARMCI

are known at compile time: events have a fixed size

that depends only on the compile-time size of their

constituent TypeMaps. Other objects that are allocated

on the ARMCI heap (list links, etc.), also have known

sizes and are much smaller than the event objects.

To simplify heap management and facilitate the

creation of classes that allocate objects on the ARMCI

heap, we created a base class named

ARMCIAllocatable that provides specialized new() and

delete() methods that allocate instances on the ARMCI

heap. Thus allocating an event object on the publisher

that will be accessible to remote subscriber processes

becomes simply:

 Event *ev = new Event;

The main limitation that our approach has is that

any pointers or references inside an object allocated on

the ARMCI heap must be to other objects on the

ARMCI heap. Importantly the transfer of these objects

to a remote address space (through ARMCI_Get() or

ARMCI_Put()) is explicit and thus any pointer links

must be followed explicitly. For this reason, our Event

objects have no links or references within them and

have their member TypeMaps fully embedded within

them.

5. Preliminary Performance Results

In order to test the performance and functionality of

our event service implementation, we created a test

application that executes the event service on a Cray

XD-1 platform on different numbers of processors.

The Cray XD-1 system is a distributed memory HPC

cluster. On the XD-1, dual-processor AMD Opteron

SMP nodes are connected through a high-speed

proprietary Cray interconnect named RapidArray [10].

Our test application initializes the event service and

then a single publisher proceeds to publish 2500 events

of a fixed size. Different numbers of subscribers will

then consume those events from the publisher’s

memory. The consumption of events simply counts the

number of entries in the event’s TypeMaps. The

application measures the number of events that can be

processed per second for a different number of

subscribers.

Figure 6 presents the number of events processed

per second for different numbers of subscribers (1 to

16) and for two different event sizes: small (4 KB) and

large (50 KB). The number of events processed per

second ranges from 66,560 for the small event size on

one subscriber to 954 for the large event size on 16

subscribers. The performance drops off as the number

of subscribers increases due to contention on the

memory subsystem and RapidArray network port for

the publisher node.

We used both processors on the Cray XD-1’s nodes

for executing our test application. It is important to

note that for the 50 KB event size the achieved data

rate (size of events times the number of events/second)

using one subscriber is 1006 MB/sec (50 KB * 20995

char evBuf[SIZE_EVENT];

…

ARMCI_Get(remotePtr, evBuf, SIZE_EVENT,
publisher);

Event *ev = reinterpret_cast<Event *>(evBuf);

listener.processEvent(*ev);

Figure 5: Accessing an event on a subscriber

process

events/second), which is comparable to the raw MPI

bandwidth we measured for the same data size (1200

MB/sec) between two nodes. The event data rate

includes the overhead in performing processing of the

event, while the MPI data rate includes only the data

transfer time.

Processing Rate

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

1 2 4 8 16

of subscribers

E
v
e
n

ts
/S

e
c
o

n
d

50 KB event size

4 KB event size

Figure 6: Event processing rate for different

numbers of subscribers

These results indicate that our scheme which places

the data on the publisher’s local memory to be remotely

consumed by the subscribers requires a careful balance

between the number of subscribers and the capability

of the publisher to serve their requests. However, with

a small number of concurrent subscribers (<= 2) our

object-oriented scheme is able to achieve high

performance that approaches that of raw HPC message

passing using MPI.

6. Conclusions and Further Work

We have demonstrated the feasibility of

implementing a publish-subscribe based event service

on an HPC platform, which supports high-level object-

oriented interfaces and can achieve high performance

comparable to raw message passing using MPI. Our

scheme uses a pull-based strategy in which subscribers

remotely consume events from a publisher’s memory

which limits its scalability with higher numbers of

concurrent subscribers.

As future work, we plan to study alternative

publish-subscribe schemes, such as a push-based

strategy in which the publisher remotely places events

onto the consumer’s memories, and other possibilities

include taking advantage of networking techniques

such as multicast to reduce the need for the publisher to

individually send data to each subscriber. Another

possibility within a pull-based approach is to replicate

the published data onto a set of nodes such that no

single node becomes a bottleneck.

7. References
[1] Y. Ashlad, B. E. Martin, M. Marathe, C. Le.

Asynchronous notifications among distributed objects. In

Procs Conf on Object-Oriented Technologies and Systems.

Usenix Association, June 1996.
[2] http://www.omg.org/technology/documents/

corbaservices_spec_catalog.htm

[3] http://java.sun.com/products/jms/

[4] http://dx.doi.org/10.1002/stvr.279P. Tran, J. Gosper,

I. Gorton: Evaluating the sustained performance of COTS-

based messaging systems. Softw. Test., Verif. Reliab. 13(4):

229-240 (2003)

[5] S. Chen, P. Greenfield: QoS Evaluation of JMS: An

Empirical Approach. HICSS-37, January 5-8, IEEE, 2004

[6] C.R. Johnson, S.G. Parker, and D.M. Weinstein.

"Component-Based Problem Solving Environments for

Large-Scale Scientific Computing," Concurrency and

Computation: Practice and Experience, 2002 14:1337-1349.

[7] J. Nieplocha, V. Tipparaju, M. Krishnan, D. Panda. High

Performance Remote Memory Access Comunications: The

ARMCI Approach. Int. J. High Performance Computing and

Applications, Vol 20(2), 233-253p, 2006

[8] R. Armstrong, G. Kumfert, L. Curfman McInnes, S.

Parker, B. Allan, M. Sottile, T. Epperly, T. Dahlgren. The

CCA Component Model for High-Performance Computing.

Concurrency and Computing: Practice and Experience,

18(2):215--229, 2006

[9] Eisenhauer, G., Bustamante, F. E.,Schwan, K.. Event

Services for High Performance Computing. In Procs 9th

IEEE Int. Syp. on High Performance Distributed Computing

(Hpdc'00) (August 01 - 04, 2000).. IEEE

[10] Tripp, J. L., Hanson, A. A., Gokhale, M., and Morveit,

H. Partitioning Hardware and Software for Reconfigurable

Supercomputing Applications: A Case Study. In SC ’05:

Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, page 27, Washington, DC, USA, 2005.

IEEE Computer Society.

