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Executive Summary 

Component technology represents an important new tool for software development. Unfortunately, commodity component 
models that are widely used in industrysuch as CORBA, DCOM, and Enterprise JavaBeansdo not address parallelism 
and other needs of high-performance scientific software.  The Common Component Architecture (CCA) component 
approach specifically targets the needs of large-scale, complex, high-performance, scientific simulations.  We have 
demonstrated the basic principles of such a system.  This proposal establishes a distributed Center, comprised of researchers 
from six DOE laboratories and two universities, focused on taking the CCA from a conceptual prototype to a full-fledged, 
high-performance component architecture for the scientific community.  
 
We propose a broad research program to define CCA specification standards, create prototype CCA frameworks and related 
infrastructure, and develop a suite of parallel components to facilitate the initial use of the CCA in other projects.  We will 
also address the increasing need to couple scientific simulations for multi-scale and multi-physics problems by developing 
tools and techniques for parallel data redistribution among components.  In addition, we will take an active role in the 
integration of CCA technology into scientific applications through work within the Center focused on chemistry and climate 
modeling and through close collaboration with outside groups adopting the CCA. 
 
This proposal is a logical extension of the software interoperability work begun under the ACTS Toolkit funded by the Office 
of Science. The resulting component technology will leverage the Office of Science investment in high-performance software 
and make it available to a wider scientific community.  
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Background and Significance 

We propose to research, develop, and deploy software component technology for high-performance parallel scientific 
computing to address problems of complexity, re-use, and interoperability for DOE simulation software.  Component 
technology has revolutionized industry’s approach to creating software [Fingarr00,Larsen00,OMG01,Sparling00].  We 
believe that high-performance component approaches will create a new paradigm for the development of DOE simulation 
software and numerical libraries.  The technology developed under this proposal will provide the following benefits to the 
DOE computational simulation community: 

• Leverage and exploit DOE’s legacy software investment by removing barriers to software re-use, enabling 
collaborative software development rather than individual efforts 

• Accelerate software development and reduce costs; computational scientists will develop applications through the 
integration of existing community components rather than build monolithic applications from scratch 

• Enable the integration of high-performance simulation codes with desktop industry software through component 
software bridges, avoiding the re-creation of exis ting technology 

Component technology represents an important new tool for the development of scientific simulation software.  It provides a 
means to manage the complexity of modern scientific simulation software and enables new simulation capabilities that were 
previously unavailable due to limitations in library re-use and interoperability.  Components allow library developers to 
describe the calling interface for a software library in a manner that hides low-level details, such as implementation language, 
compiler, parallelism, or location on a network.  Application developers therefore do not need to be concerned with questions 
such as "Can my Fortran program call this C++ solver library that was parallelized with MPI?"  Components encapsulate the 
knowledge, experience, and work of other scientists, and they provide the building blocks that speed application 
development. 

Component approaches based on CORBA [OMG98,OMG99], COM [Eddon98], Microsoft’s dot-NET [NET], and Java 
technologies [Kara99] are widely used in industry but do not address parallelism.  We intend to extend these commodity 
approaches to satisfy the unique requirements of high-performance parallel scientific computing.  Our research activities will 
address issues of parallel data redistribution among distributed components, integration of high-performance parallel 
component frameworks with distributed frameworks and existing industry component technologies, and language 
interoperability with important scientific languages such as Fortran 90.  We will develop a single component framework for 
DOE scientists as well as important components for data management and numerical methods.  We will deploy this advanced 
software technology to the scientific community using a web-based component repository. 

This proposal is a logical extension of the software interoperability work begun under the ACTS Toolkit funded by the Office 
of Science.  It has been difficult for applications to use many of DOE’s sophisticated software packages due to differences in 
implementation language, programming style, or calling interfaces.  This proposal addresses these issues, and the resulting 
component technology will leverage the Office of Science investment in scientific software and make it available to a wider 
scientific community. 

Introduction to Component Technology Terms 
Component technology is an extension of scripting and object-oriented software development techniques [Ousterhout98, 
Parker97b] that specifically focuses on the needs of software re-use and interoperability.  In simple terms, a component is a 
software entity that adheres to well-defined interoperability behaviors that facilitate re-use [Szyperski97].  Components are 
software objects (in the object-oriented sense) with additional support for language and network transparency along with 
required behaviors that simplify communication and connection with other components.  In the high-performance parallel 
computing environment, we define a parallel component to be the logical collection of individual but coordinated software 
components running on multiple processors.  This model follows the traditional SPMD programming approach in which a 
SPMD program consists of multiple but coordinated programs running on a parallel machine.  For simplicity, we will 
typically use the term component to refer to both parallel and serial components. 
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We will use the term framework  in this proposal to refer to the supporting software infrastructure that enables us to build 
applications from components.  That is, a framework consists of the necessary communication routines, composition support, 
language interoperability technology, and low-level services required to use component technology.  Our use of the term 
framework  is similar to the term Object Request Broker in CORBA [OMG98].  To use a hardware analogy, a component is 
like a “software integrated circuit” with well-defined pin-outs that may be connected to compatible pins on other “software 
integrated circuits.”  A framework is like the underlying hardware bus that defines standard voltages and bus timing diagrams 
for communication. 

Finally, we will use the phrase common component architecture (CCA) to refer to both the proposed overarching software 
component architecture for DOE high-performance simulations as well as the existing standards body developing that 
architecture.  The term CCA-compliant refers to software that follows the CCA architecture specification. 

A Motivating Scenario 
In this section, we describe a motivating scenario that indicates the potential and broad utility of components in high-
performance scientific computing.  While this proposal focuses on applications in chemistry and climate modeling, the goals 
of the Center for Component Technology for Terascale Simulation Software (CCTTSS) are broader and will contribute 
significantly to other proposed SciDAC work.  The following simplified scenario is similar to the established collaboration 
between CCA researchers and the Computational Facility for Reacting Flow Science, which is submitting a SciDAC proposal 
in collaboration with members of the CCA (see Appendix C). 

In this collaboration, combustion scientists plan to establish a computational facility for parallel distributed-memory 
chemically reacting flow simulations (see Figure 1).  As is commonly the case in this computational domain, their approach 
uses an explicit time marching algorithm.  Implicit methods enable the use of larger time steps and therefore can achieve 
faster solutions.  However, they are not often used in combustion simulations because they require advanced parallel linear 
algebra capabilities that are beyond the scope of the combustion scientists’ primary interests and expertise.  In order to 
introduce an existing linear equation solver component to deal with thin boundary layers, the computational scientists decide 
to reformulate their existing simulation code as a collection of components.  Their principal task in restructuring their 
application is identifying the interfaces that each component will provide and use, where an interface is a set of function calls 
that together encapsulate the functionality of the software.  In addition, with a small amount of “glue” code to make the 
overall simulation comply with CCA component standards, other component applications will be able both to use and to be 
used by the application components. 

 
 
Figure 1: Simplified diagram of a combustion simulation created from components.  The computation occurs on a distributed-memory 
cluster and is composed of three components: a time integrator, a combustion physics model, and a preconditioned Krylov solver.  
Communication within a parallel component is at the discretion of the component itself.  In this figure, each processor communicates with 
its collaborating processors using MPI message passing.  These components encapsulate their respective algorithms, which have been 
composed to form the simulation (see the framework section for a detailed explanation of composition). Real-time visualization of the 
simulation takes place on a shared-memory computer, for which the distributed data on the cluster must be mapped by a parallel data 
redistribution component to the shared-memory machine. 
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The combustion scientists decide that their application can be split into two components: a multi-scale time integrator and a 
combustion physics component. In addition, they decide that the linear equation solver will interface with the combustion 
physics component.  They choose to use the reference implementation provided by the Equation Solver Interface (ESI) forum 
[ESI], whose solvers have been encapsulated as CCA components.   The ESI forum involves many DOE numerical linear 
algebra research groups working together to define common interfaces for parallel linear algebra software.  The goal of the 
ESI is  to enable interoperability among different solver toolkits. By using ESI components, the combustion scientists will be 
able to experiment easily with multiple solution strategies and upgrade to new solver approaches as they become available. 

It is likely that the combustion scientists will want to visualize their results on an available shared-memory visualization 
server.  Thus, they will use CCA parallel data redistribution facilities to transfer their processor-decomposed data to a 
visualization component that encapsulates existing visualization software.  Parallel data redistribution is an important 
research focus area described later in this proposal. 

Preliminary Studies and Related Work 

In this section, we review previous work by participants of this proposal.  We also briefly describe related work by other 
members of the high-performance software component community.  As demonstrated in the following discussion, we have a 
strong foundation of preliminary research as a multi-institutional collaborative group.  Moreover, complementary research 
projects at our various institutions contribute to our experience base and opportunities for leverage. 

The Center for Component Technology for Terascale Simulation Software (CCTTSS) proposal team includes participants 
from DOE laboratories (ANL, LANL, LLNL, ORNL, PNNL, and SNL) and two academic institutions (Indiana University 
and the University of Utah).  We are a multidisciplinary group with backgrounds in computer science, mathematics, and 
various scientific application areas.  We have a long history of collaboration as members of the Common Component 
Architecture (CCA) working group.  The CCTTSS proposal team is a subset of CCA forum members.  The CCA was formed 
in January of 1998 and is open to all who want to develop component technology standards for high-performance scientific 
computing.  Since its beginning, the members of the CCA have met quarterly to discuss component technologies, jointly 
develop software, write and vote on component software specifications, write research papers [Armstrong99], and advance 
the state-of-the-art in component technology for scientific computing.  We have also developed a web application called 
Quorum [Quorum01] to simplify online voting for the CCA.  Quorum has enabled the CCA to discuss, vote on, and establish 
community software standards between our quarterly meetings. 

This section discusses preliminary research in four important areas: (1) component frameworks, (2) scientific components, 
(3) parallel data redistribution tools , and (4) integration of CCA technology into applications. 

Component Frameworks 
Recall that the term framework  in this proposal refers to the supporting software infrastructure for component technology.  A 
component framework requires component connection capabilities, a communication infrastructure (for both distributed and 
efficient same address-space method invocations), language interoperability technology, component composition tools, and a 
component repository for storing software components.  In this  sense, component frameworks address different problems 
than object-oriented application frameworks such as Overture [Brown97], POOMA [Atlas95], and SAMRAI [Hornung98, 
Hornung01].  Component frameworks focus on the horizontal integration of components across code projects, whereas 
application frameworks address vertical integration within a narrowly defined application domain. 

Proposal participants have a history of investigating the various issues associated with scientific component frameworks.  We 
have implemented both SPMD parallel frameworks and distributed grid-based frameworks.  We have experience with 
communication protocols, performance issues, and language interoperability technology.  Preliminary collaborations have 
resulted in a single CCA component specification (described below) that describes component connection behavior.  We will 
create other community specificationssuch as for language interoperability, framework interoperability, and component 
repositoriesunder the auspices of this proposal. 
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CCA Specification 
We present a brief overview of the component model and composition mechanisms provided by the current CCA 
specification [CCA01].  We have focused our effort to date on basic functionality for composing parallel applications from 
CCA components. The current specification consists of two parts: (1) a core specification defining an interface that a 
component must implement to be connected to another component (see Figure 2), and (2) a collection of standard interfaces, 
or ports, that comp onents must support.  For example, we define standard port interfaces for component connection and 
disconnection. 

We have designed the CCA architecture to be lightweight and simple to use.  It is relatively easy to create components from 
legacy software, thereby bringing interoperability to otherwise monolithic high-performance computing codes.  Most 
importantly, the CCA specification allows the preservation of performance.  While the CCA component connection 
mechanism supports interfaces that are proxies for remote objects, it also supports direct connections between objects in the 
same memory address space.  This approach lowers the latency overhead for using components equivalent to a few virtual 
function calls, even between languages using the proposed Scientific Interface Definition Language (discussed below) 
technology for language interoperability.  The CCA specification avoids dictating details concerning intro-component 
communication, thereby preserving latitude to select message-passing, shared memory, or other communication mechanisms 
that best suit the encapsulated functionality.  

Currently the CCA specification is concerned only with composing scientific components.  A separate interface definition 
language called SIDLfor Scientific Interface Definition Language [Cleary98,Epperly00]is being developed as part of 
this proposal to provide language interoperability for CCA port interfaces.  We plan to express the CCA specification and 
port interface descriptions entirely in SIDL for language interoperability to C, C++, Fortran77 and 90, Java, Python, 
MATLAB, and other scientific programming languages, as needed. 

Preliminary Framework Research 
PARDIS [Keahey97,Keahey97b,Keahey98] is one of the early parallel component framework research activities, and it is 
one of two academic references cited in the OMG request for proposals for parallel extensions to CORBA.  PA RDIS, an 
environment for building PARallel DIStributed applications, employs the important idea of CORBA [OMG98] 
interoperability through an interface definition language to implement application-level interaction of heterogeneous parallel 
components in a distributed environment. PARDIS builds on CORBA in that it allows the programmer to construct meta-
applications without concern for component location, heterogeneity of component resources, or data translation and 
marshaling during communication.  PARDIS extends the CORBA object model by introducing SPMD objects representing 
data-parallel computations; these objects are implemented as a collaboration of computing threads capable of directly 
interacting with PARDIS ORB. The PARDIS approach is related to PaCo, which extends CORBA to support efficient 
encapsulation of parallel codes into distributed objects [René00].  The Ligature project [Keahey00] at LANL focused on 
providing and processing performance information within a component environment to enable performance-guided design. 

 

Figure 2: The CCA mechanism for connecting two peer components together using the Provides/Uses design pattern. 
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The Ligature design approached performance tuning at three levels: application, run-time and hardware.  Other work at the 
Los Alamos Computer Science Institute focuses on compiler approaches for optimizing component software [LACSI]. 

ORNL has a history of work in message-passing systems and component-based heterogeneous distributed computing 
environments. The widely used PVM system [PVM] provides a rich operating environment for parallel computing, with 
message passing, task and resource management, fault notification mechanisms, and pluggable system services.  Lessons 
learned from the PVM research [Geist99] have led to the development of the next -generation Harness environment [Beck99].  
Harness is based on the concept of a pluggable virtual machine, where system functionality, messaging substrates, 
programming models, and the virtual machine itself is "hot swappable" via a parallel plugin mechanism.  Plugins 
dynamically install in parallel in a lightweight kernel.  The Harness model is closely related to the CCA model, and Harness 
will symbiotically feed the design and development of CCA. 

Framework for SPMD Computations 
The group at SNL has implemented a CCA-compliant SPMD framework called CCAFFEINE [Allan01] that assembles and 
runs scientific applications from components on commodity clusters. We view this as the starting point for investigating 
high-performance SPMD components.  CCAFFEINE consists of a C++ core framework that allows loading and manipulation 
of Single Component Multiple Data (SCMD) CCA components and their composition into application codes on workstation 
clusters.  We have implemented the core framework as separable, well-documented pieces, thereby enabling modification or 
augmentation by the DOE community.  CCAFFEINE allows interactive assembly of an application code by a single user. 
The framework has been created in three independent parts, each of which can be independently reused by applications: a 
core framework API and implementation, a one-to-many multiplexer, and a GUI. The web browser embeddable GUI visually 
represents the CCA uses/provides metaphors [Armstrong99]. Aside from the GUI, assembly information can be scripted to 
the core framework in a native language, thus allowing application codes to be run in a batch queue mode. The multiplexer 
connects the GUI to the core framework and allows a single user to interact scalably with thousands of processors.  

High-Performance Problem Solving Framework 
During the past several years, the University of Utah has developed SCIRun [Davidson00,Johnson95,Parker97,Parker99], a 
scientific programming environment that allows the interactive construction and steering of large-scale scientific 
computations.  SCIRun is a framework in which large-scale simulations can be interactively composed, executed, controlled 
and tuned.  Composing the simulation is accomplished via a visual programming interface to a data-flow network.  To 
execute the program, one specifies parameters with a graphical user interface rather than with a traditional text -based data 
file. Controlling a simulation involves steering the simulation interactively as it progresses.  In SCIRun, the typical 
components of the computational paradigmgeometric modeling, numerical analysis, and scientific visualizationare 
integrated into a visual programming environment with the ability to interactively steer any one phase of the process and to 
see the effects propagate throughout the system automatically.  SCIRun currently serves as a testbed for prototyping ideas 
that will be moved into the CCA specification.  Many SCIRun components are already CCA compliant, and as the CCA 
specification matures, we plan to enhance the framework accordingly.  We also intend to use the SCIRun graphical user 
interface as the basis for a CCA component builder GUI. Finally, SCIRun will be used as an alternative CCA implementation 
that can validate the CCA claims for true framework-to-framework interoperability. 

Framework for Distributed Computations 
The group at Indiana University has been involved in two preliminary investigations of software component architectures that 
are focused on wide-area grid-based environments.  Our first efforts in this area are based on a chapter co-authored by 
Gannon and Grimshaw in the “Grid Book” [Gannon98].  Our first implementation, the "Component Architecture Toolkit" 
(CAT) [Villacis99], predates CCA and was sponsored by the ACTS Toolkit project.  This system explored some preliminary 
ideas based on a component model where components were linked by connecting ports. This work was demonstrated in 
several applications, including a component system called the Linear System Analyzer (LSA) [Bramley98,Bramley99], 
which enabled users to interactively analyze linear systems based on sparse matrix computations. Our first serious application 
of this system involved integrating LSA into an industrial mold filling simulation [Illinca97] that was part of the HPC 
Challenge competition at SC'99, where it was awarded the prize for best industrial application.  Our second version of the 
distributed component architecture is based on the original CCA specification [CCA01].  This distributed grid-based 
implementation was demonstrated at SC'00 and was described in a paper at HPDC [Bramley00]. 
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Language Interoperability 
The team at LLNL has developed a tool called Babel [Cleary98,Kohn01,Epperly00] that addresses language interoperability 
issues for high-performance parallel scientific software. Its purpose is to enable the creation, description, and distribution of 
language independent software libraries.  Babel uses Interface Definition Language (IDL) techniques. An IDL describes the 
calling interface (but not the implementation) of a particular software library. IDL tools such as Babel use this interface 
description to generate glue code that allows a software library implemented in one supported language to be called from any 
other supported language. We have designed a Scientific Interface Definition Language (SIDL) that addresses the unique 
needs of parallel scientific computing. SIDL supports complex numbers and dynamic multi-dimensional arrays as well as 
parallel communication directives that are required for parallel distributed components.  Babel currently supports Fortran 77, 
C, C++, and some Python.  Babel will provide language interoperability capabilities for our component architecture, and we 
will add support for additional languages, such as Fortran 90. 

Component Repository 
The group at LLNL has also implemented a prototype web-based repository called Alexandria to encourage the distribution 
and reuse of scientific computing components and software libraries [Alexandria01,Epperly00]. Alexandria provides a 
convenient web-based delivery system for our component technology and thus lowers the barrier to adopting component 
software.  It provides a sophisticated inexact search algorithm, a convenient web-based interface to the Babel language inter-
operability tool, a repository of type information to be used by the Babel language interoperability tool, and a calling 
interface to support queries by other component software tools. We will work with the CCA forum to establish common 
schema for accessing Alexandria from component tools developed by collaborators at other DOE laboratories and academia. 

Parallel Components for DOE Computational Science Domains 
Proposal team members have developed a variety of prototype components for use in the frameworks described in the 
previous section.  For example, the CCA DataHolder component, which is distributed with the CCAFFEINE framework 
[Allan01], provides capabilities for parallel management of logically uniform rectangular arrays. In addition, we have 
encapsulated a rich set of capabilities for parallel numerics, steering, and visualization in software libraries.  These libraries 
provide a start ing point for research on domain-specific common component interfaces as well as core technology that will 
underlie various component implementations.  This section discusses preliminary research in community interface standards, 
parallel numerical toolkit interoperability, and tools for visualization and steering. 

Common Data Interfaces 
Members of the CCA have recently begun work to define general component interfaces for data associated with arrays and 
meshes. This work builds on experience encapsulated within various parallel mesh manipulation toolkits, including the 
DataHolder component provided in the SNL reference framework [Allan01], the SUMAA3d (Scalable, Unstructured Mesh 
Algorithms and Applications) package [Freitag98], the Opt-MS mesh improvement library [Freitag99,Freitag00], and the 
GrACE [Parashar00] and SAMRAI [Hornung98,Hornung01] structured adaptive mesh refinement libraries. We also leverage 
support within CUMULVS [Geist97] for rectangular data arrays, as well as capabilities within the Global Array (GA) system 
[Nieplocha96], which offers a portable shared-memory programming model for dense multi-dimensional arrays in distributed 
memory environments. 

Another project that provides experience and underlying technology for this work is ARMCI [Nieplocha99], a portable high-
performance communication library that supports remote-memory copy and related operations, including I/O vector handling 
and multi-strided data formats.  For performance reasons, ARMCI emphasizes noncontiguous data transfers that correspond 
to the data structures most often used in scientific applications. We will modify the data interfaces in ARMCI to match those 
under development for the CCA scientific data interface, in conjunction with ARMCI's support for dense and sparse arrays 
and stencil representations.  In addition, since the GA system is based on ARMCI run-time support and portability, it will be 
well poised to incorporate parallel data exchange technology, also under development within the Center. 

Parallel Numerical Toolkit Interoperability 
Several CCA forum participants are members of the DOE Equation Solver Interface (ESI) [ESI] working group, a 
collaborative effort to develop standards for parallel linear algebra tools within the DOE community.  The ESI is committed 
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to using CCA component technology.  CCA forum participants who are also involved with ESI work include the developers 
of hypre [Chow98], ISIS++ [Isis01], PETSc [Balay97,Balay00], and SAMRAI [Hornung98,Hornung01]. We expect that 
such collaborative efforts in the design of common APIs will facilitate the interoperability among complementary software 
tools developed at different institutions. 

The Advanced Large-scale Integrated Computational Environment (ALICE) project [ALICE01,Freitag99b] has been the 
center of recent numerical component research at ANL.  This project focuses on building low-overhead infrastructure for 
dynamically assembling parallel software tools and designing performance-sensitive abstract interfaces that define the 
interactions among them.  For example, we developed several light-weight basic services, including error handling, memory 
management, runtime options management, and component observation [Balay98], which now serve several libraries and 
provide the foundation for the proposed development of analogous CCA services.   ALICE is also exploring interoperability 
issues among parallel numerical libraries for nonlinear PDEs, optimization, and mesh management, including PETSc 
[Balay97], TAO [Benson00,Benson00b], and SUMAA3d [Freitag98].  These parallel toolkits use mathematical abstractions 
in their design, and have been employed in a wide variety of scientific applications.  For example, a three-dimensional 
unstructured aerodynamics application using the PETSc library won a Gordon Bell prize at SC99 [Anderson99].  We have 
extensive practical experience in developing interfaces among these tools and other software within the ACTS toolkit, 
including the PVODE ODE solvers [Hindmarsh01], the Overture software [Brown99] for composite meshing and 
discretization, and several linear algebra packages [Freitag98b,Buschelman00].  The SAMRAI team has also developed 
interfaces to the Newton-Krylov methods of PETSc, and these tools will be employed in a magnetohydrodynamics 
application proposal to SciDAC (see Appendix C). 

Proposal participants at LLNL have integrated their Babel language interoperability technology into the hypre library 
[Chow98], a suite of parallel scalable linear solvers and preconditioners.  This demonstration project enabled the hypre team 
to explore more advanced design alternatives, reduce the size of the library by eliminating redundant routines, and provide 
calling interfaces for other languages [Smolinski99,Kohn01].  We are continuing this work with the hypre team and plan 
similar collaborations with other members of the SciDAC Terascale Optimal PDE Simulations ETC center (see Appendix C). 

Components for Steering, Visualization, and Fault Recovery 
The CUMULVS (Collaborative, User Migration, User Library for Visualization and Steering) [Geist97,Papadopoulos95] 
system developed at ORNL provides a platform for interacting with running simulation programs.  It includes functions for 
run-time visualization of simulation data while they are being calculated [Kohl99].  In response to this visual feedback, 
scientists can "close the loop" and apply computational steering of parameters on-the-fly, whether model-based or 
algorithmic [Kohl97].  To maintain the execution of long-running simulations, CUMULVS includes an application-directed 
checkpointing facility and run-time service for automatic recovery of failed tasks, even in a heterogeneous environment 
[Kohl98]. The CUMULVS interface uses loose synchronization protocols to extract consistent data frames and apply steering 
parameter updates in unison across parallel tasks without barriers.  Individual steering parameters can be locked to prevent 
conflicting updates by multiple users.  This technology directly applies to the development of visualization and 
computational steering components for the CCA. The CUMULVS checkpointing and fault recovery system builds on top of 
the visualization and steering infrastructure.  Data descriptions can be marked as contributing to essential program state and 
collected in checkpoints for failure recovery.  A run-time checkpointing daemon handles checkpoints and restores failed tasks 
automatically.  This technology directly applies to fault recovery components and accompanying framework services. 

Parallel Data Redistribution and Model Coupling 
PAWS (Parallel Application WorkSpace) is a software infrastructure for connecting separate parallel applications within a 
component-like model [Beckman98]. A central PAWS controller coordinates the linking of serial or parallel applications 
across a network to allow them to share parallel data structures such as multidimensional arrays. Applications use the PAWS 
interfaces to indicate which data structures are to be shared and at what points the data is ready to be sent or received. PAWS 
implements a parallel data descriptor and automatically carries out parallel layout re-mapping when necessary.  Connections 
can be dynamically established and dropped and can use multiple data transfer pathways between applications. PAWS uses 
MPI and is independent of the application's parallel communication mechanism. An alternative approach for multi-physics 
model coupling at the level of whole applications is underway at the University of Illinois [de Sturler00]. 
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The CUMULVS [Geist97] data collection interface performs automatic extraction of in-core data from parallel simulations.  
The application provides data descriptions to specify local data allocation and its context in the global data decomposition.  
Given this information, CUMULVS transparently extracts desired data elements from a distributed array.  This technology 
will form the basis for parallel data exchange.  Complementary to the send/receive data collection in PAWS, CUMULVS 
protocols support persistent data channels that periodically transmit data frames in sequence.  Together, these 
synchronization protocols relate well to the design of parallel remote method invocations, and CUMULVS and PAWS 
provide a sound foundation for parallel data redistribution and model coupling. 

Integration of CCA into Scientific Simulation Software 
To date, CCA participants have focused on developing a component infrastructure and prototype components.  However, we 
have also implemented prototypes of complete component applications.  At SC99, SNL and ORNL demonstrated a simple 
thermal conduction application that integrated an ESI-based numerical component [ESI] and an early version of the 
CUMULVS-based Eyes visualization component under the CCAFFEINE framework.  At SC00, the same team incorporated 
a combustion model component from another SNL applications group to simulate a chemical reaction-diffusion system. This 
simulation used swappable implicit solver components and an improved Eyes component in the CCAFFEINE framework 
[Allan01].  The Indiana University group also demonstrated component technology by integrating linear system analysis 
capabilities into an industrial mold filling simulation [Illinca97] as part of the HPC Challenge competition at SC'99. 

Research Design and Methods 

In this section, we describe our proposed research directions that will unite the preliminary work described in the previous 
section.  We present our primary research in four sections.  First, we describe the component framework development that 
will establish a software infrastructure for creating component applications.  Next , we list the various types of parallel 
numerical and data components that we will create for use in scientific applications.  The third section discusses probably the 
most vital research issue facing parallel component technology: parallel data redistribution.  The fourth section describes how 
we will use our component framework and associated components in applications for chemistry and atmospheric simulation.  
We conclude with a summary of project deliverables and an overview of our software delivery and deployment plans. 

Component Frameworks 
Coordinator: S. Kohn (LLNL) 
 
The CCA component framework will satisfy three primary goals.  First, it will support high-performance parallel applications 
written in a SPMD style with little, if any, measurable performance overhead.  Second, it will support communicating 
components that execute on distributed parallel platforms (i.e., grid-based programming) at some loss in performance due to 
network communication costs.  Finally, it will interoperate with commodity component architectures such as Enterprise Java 
Beans or COM or the new Microsoft dot-NET framework [NET].  Application developers will build applications from 
components, either through a graphical component composition tool, a standard compiled programming language such as 
C++, or through a scripted language such as Python.  We will create a graphical composition tool, and the language 
interoperability support from Babel will allow developers to connect components in any of its supported programming 
languages. 

Grid Framework Environment 
Investigator:  D. Gannon (IU) 
 
The most visible application of CCA technology will be the way it enables a coupling between the user’s desktop application 
and remotely executing parallel scientific code.  We expect that users will want to compose a parallel component application 
using components running on different machines.  For example, a scientific application may need to connect to a remote 
database or a remote on-line instrument.  In other words, we expect CCA applications will be composed of components that 
may be executing anywhere on the DOE grid [GF]. 
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We have developed a prototype implementation of the CCA specification that allows the dynamic composition of remotely 
executing components using Globus [Globus].    This  prototype provides a set of services available to any application 
component.    These services include:  

• A remote instantiation service, which allows one component to launch instances of other components anywhere on 
the grid. 

• A connection service, exported to components as a port, that can be used to link the provides ports of one 
component to the uses ports of others.  Connections between ports are based on an implementation of Remote 
Method Invocation (RMI) running over SOAP [Box00].  SOAP is the new XML-based remote procedure call 
mechanism supported by Microsoft and IBM.  Babel XML schemas will be used to define the port interfaces.  We 
recognize that some remote method invocations will require higher performance than SOAP affords.  As part of the 
proposed work, we will create a SOAP-based negotiation mechanism for trading "up" to a faster RMI mechanism. 

• A component meta-data archival and search mechanism based on XML specifications that can be stored in a 
repository such as the Grid Information Service (which is based on LDAP) or on a web based archive such as the 
Alexandria component repository described below. 

• An event service, which allows arbitrary application or framework based event messages to be propagated around 
the grid to authenticated event listeners such as performance monitors, debuggers, and interactive visualization and 
steering tools.  Each event is an XML object that can be turned into a C++ or Java object automatically. 

The services described above are encapsulated as CCA components.   This implies that any CCA component can access them 
in the same way they access any other component.   There are several tools available for composing components together into 
applications.   However for large or complicated scientific applications, we use Python scripts.  Because Python can also be 
used as a control language for Microsoft COM, it is not difficult to compose COM and CCA components by building a 
Python "bridge" component that exposes the interfaces of a COM object as a CCA port.  We already have a working, direct 
link between Microsoft’s dot-NET architecture [NET], which is the future of Microsoft technology, and CCA via the SOAP 
communication. 

SCMD Framework Environment 
Investigators: B. Allan, R. Armstrong (SNL) 
 
Single Program Multiple Data (SPMD) is the most common paradigm for high-performance computing.  We have developed 
a framework called CCAFFEINE that brings component design concepts to SPMD computing.  We call this extension 
SCMD for Single Component Multiple Data [Allan01].  No commercial component model supports a parallel computing 
paradigm, and none is expected.  Figure 3 illustrates our single component multiple data model. Components are linked via 
CCA ports.  Component connections are identical on every processor. 

Unlike the distributed grid-based framework that connects components over a network, the connections between components 
in a SCMD environment are direct connections; that is, each interface to the connected component is referenced directly 
(e.g., through a pointer).  The penalty for calling a component through a local interface is a few virtual function calls, at 

 
 

Figure 3: Illustration of intra - and inter-component communication in a SCMD framework.  Communication is performed within 
components (horizontal lines) and direct method invocation is performed between components (vertical lines). 
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worst.  Communication among components on different processors is entirely at the discretion of the components themselves.  
Although the CCA specification will provide facilities for the use of MPI or PVM, intra-component communication is part of 
the parallel algorithm and is the component’s responsibility. 

The proposed work for the first year will focus on the usability of the SCMD framework in the target applications: 

• We will emb ed the SCMD composition infrastructure as a module in Python.  This will enable rapid prototyping of 
SCMD applications for research purposes and reduce the barrier to acceptance by providing scientists with a 
familiar, well-documented language with which to work.   Because scientists can incrementally incorporate CCA-
compliant behavior into their existing code as needed, they will not need to buy into everything at once. 

• We will develop a proposed standard and implementation for loading CCA SCMD components as dynamically 
linked libraries.  As a part of this work, we will devise a component build standard, and we will produce software 
tools to facilitate component construction under this standard.  Subsequently, we will propose the standard to the 
CCA forum for adoption.  With these tools, a SCMD component written under this build standard will be loadable 
automatically from any CCA-compliant framework with little porting required by the user. 

In future years we will further refine and generalize the SCMD paradigm to accommodate emerging architectures, such as 
distributed shared memory, and likewise we will augment the CCA standard. 

SCMD/Grid Environment Integration 
Investigators: B. Allan (SNL), D. Gannon (IU) 
 
This work will focus on integrating commodity components running on desktops to high-performance components running 
on massively parallel machines.  The SCMD framework already contains a multiplexing capability to interface with the 
distributed-object module.  It composes parallel applications on clusters of machines by scripting from a batch file at a single 
point on the network.  As part of the proposed work, we will create a distributed multiplexer that will reliably communicate 
between compositions of SCMD components and the distributed-object, grid-based world, enabling high-performance 
computing to the desktop.  This work will establish a protocol, consistent with the Babel XML schema mentioned below, that 
will allow users to interact dynamically with components instantiated on tens of thousands of processors. 

Concurrency Service Port 
Investigator: S. Parker (UU) 
 
We will examine concurrency issues related to a multi-threaded framework.  This work will extend previous efforts with 
multi-threaded programming environments [Parker99].  In particular, we will develop a standard concurrency interface to 
allow components to use concurrency in a consistent way and an implementation to make it available for community testing.  
We will also propose modifications to the specification to facilitate thread-based computing on distributed shared-memory 
architectures.  Although parallel computing is typically SPMD, new paradigms are being made available by the advent of 
distributed clusters of shared memory machines.  In the later years of the proposal, we will extend the SCMD concept to 
include parallel computing paradigms.  The goal for the Concurrency Service Interface is to present an intuitive image of 
concurrency while avoiding its pitfalls. This will require iteration in response to user requirements in subsequent years. 

Graphical User Interface to CCA Frameworks 
Investigator: S. Parker (UU) 

 
A graphical user interface is an intuitive method to assemble different components into a working application.  We will adapt 
the graphical user interface developed for SCIRun [Parker999] for use in a CCA environment.  We will define a standard 
method for connecting user interfaces to a CCA framework.  This will allow other user interfaces to be developed in the 
future, if such a need arises.  We also envision using this interface to allow construction of CCA applications from various 
scripting languages. 
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Language Interoperability Technology 
Investigators: D. Dahlgren, S. Kohn (LLNL) 
 
Our component architecture will support scientific components written in a variety of common scientific programming 
languages, such as Fortran 77, Fortran 90, C, C++, Java, Python, MATLAB, and other languages, as needed.  Language 
interoperability is an important capability for a component architecture, as differences in implementation languages 
frequently hinder the re-use of scientific software libraries.   

 As described in the Preliminary Studies section, we have developed a language interoperability tool called Babel 
[Epperly00], designed specifically for scientific component software.  Babel describes component interfaces using a 
Scientific Interface Definition Language (SIDL), and Babel uses this SIDL description to automatically generate glue code 
that mediates calling differences among programming languages. SIDL addresses the unique needs of parallel scientific 
computing: complex numbers, dynamic multi-dimensional arrays, and parallel communication directives for distributed 
components. 

We will use Babel and SIDL in our component architecture for language interoperability.  Because SIDL is language-
independent, component tools such as the component repository and graphical application builders will use SIDL type 
descriptions to describe component interfaces.  SIDL type information is stored in an XML format that is amenable to 
manipulation by automatic component tools.  The Babel tools currently support Fortran 77, C, C++, and client-side Python.  
By the beginning of this proposal, we anticipate that it will also support client-side Java.  Under this proposal, we will add 
language support for Fortran 90 (requested by our atmospheric and astrophysics application collaborators) and MATLAB 
(for prototyping numerical solvers).  Server-side Java and Python will be developed under leveraged funding.  We will 
integrate the Babel technology into the unified component framework and work with the component tool developers to 
standardize the SIDL XML type schema. 

We have also implemented a compiler for the SIDL language that adds support for distributed objects.  This system uses 
Nexus for communication between components located on different machines.  We will use this implementation as a testbed 
for exploring different methods for connecting parallel components that exist on different parallel machines.  Successful 
examples from this testbed implementation will be included into the Babel tool and the CCA specification. 

Component Repository and Software Deployment 
Investigator: T. Epperly (LLNL) 
 
We will deploy our component technology using a web-based software repository that will house all components developed 
by this proposal as well as the underlying component framework.  We will also work with other ETC centers and application 
developers to deploy their software using this component repository. 

Because component technology opens new opportunities for sharing and re-using software, a component repository must 
provide sophisticated cataloging, and searching capabilities.  The repository must understand component description schemas 
that describe interface types, versions, and interdependencies.  For examp le, the repository must be able to answer queries 
such as "Show me all linear algebra solvers that support a matrix of this type." 

As described previously, we have developed a prototype web-based repository called Alexandria  [Alexandria01,Epperly00].  
In addition to providing a web interface for retrieving component software, Alexandria also provides a type repository for 
SIDL XML interface descriptions as well as a convenient interface to the Babel language interoperability tools.  Under this 
proposal, we will extend Alexandria’s support for component software and component tools.  We will standardize an XML-
based component description schema for storing and retrieving component software.  We will define web-based interfaces 
that enable component tools such as graphical program builders to query and search the repository, obtain component 
documentation, and automatically download and install software components. 
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Parallel Components for DOE Computational Science Domains 
Coordinator: L.C. McInnes (ANL) 
 
Many difficult research issues must be addressed before we can hope to realize our vision of plug-and-play computational 
science components.  We employ a three-pronged approach:  (1) define domain-specific abstract interface specifications 
through collaborations with other ETCs and applications groups, (2) develop a suite of parallel scientific component software 
implementations, and (3) explore research issues that are unique to the DOE computational science environment, including 
quality of service issues related to robust, efficient, and scalable performance. As discussed in the Preliminary Studies 
section, we have a strong foundation for this work in the form of prototype CCA-compliant components and rich parallel 
tools that already use abstractions in their design.  

This ETC will play an essential role in cross-cutting integration activities among other ETCs and application teams by 
layering and adapting the work of other centers.  In particular, we will encapsulate the domain expertise of other scientists by 
modifying existing parallel software librariesfor example, linear and nonlinear solvers, mesh management, optimization, 
fault tolerance, steering, and visualizationto use component technology and by collaborating with other ETC teams to 
develop additional components. This component suite will provide basic functionality needed by a range of simulations, 
including combustion, fusion, microtomography, chemistry, and climate, and will serve as a testbed for frameworks and 
related infrastructure.  This component suite is in no way intended to provide the only implementation of any particular 
functionality. Rather, an important facet of our approach involves dialogue among the community to define domain-specific 
abstract interfaces.  Now is the time for such activities; multiple tools already exist, and we can exploit their differences and 
leverage their commonalties. We expect that this work will improve technology transfer among DOE laboratories and 
academia, since scientists will be able to incorporate the latest computational research methodologies if software provides 
standard hooks.  In addition, academics should find it easier to incorporate DOE test problems to motivate their research and 
to evaluate the performance of newly developed algorithms. 

Scientific Data Components 
Coordinator: L. Freitag (ANL) 
Investigators: B. Allan (SNL), R. Bramley (IU), J. Nieplocha (PNNL), J. Ray (SNL) 
Collaborators: proposed Terascale Simulation Tools and Technologies Center (PI: J. Glimm), other proposal participants 
 
The principal underlying data structures in large-scale parallel applications take many forms, ranging from dense and sparse 
arrays to mesh-based discretizations that approximate continuous PDEs. Because no widely accepted, standardized interfaces 
exist, applications researchers typically maintain their own unique data structures and interfaces.  Linking these one-of-a-kind 
interfaces with other tools often requires extensive effort, which seriously impedes experimentation with various strategies. 
We propose to address this situation by developing common interfaces for several data types and deploying them in 
numerical components. Our interfaces will be flexible enough to support a range of underlying implementations, but specific 
enough to ensure numerical efficiency and high performance on distributed architectures.  The interfaces will support data 
access at different levels, ranging from low-level raw data formats to higher-level representations, including arrays, meshes, 
and fields.  For the high-level representations, we will pursue three parallel tracks: defining interfaces for multi-dimensional 
arrays, defining interfaces for mesh-based discretizations, and developing a data interface broker. 

Distributed Arrays.  For multi-dimensional, distributed arrays, our initial efforts will focus on defining interfaces for dense 
array formats, including mechanisms for accessing data by subblocks or in a strided fashion.  We will also define interfaces 
for several sparse storage formats and consider additional operations such as gathers/scatters for dense and sparse arrays.  We 
will evaluate interface efficiency and flexibility in tests with existing distributed array implementations, including Global 
Arrays [Nieplocha96], which serves the NWChem [NWChem01] application discussed in the Application Integration 
section. 

Mesh-based Discretization. For mesh-based discretization, we will initially focus on defining interfaces to access static, 
non-adaptive data on both structured and unstructured meshes. Once the initial specifications are complete, we will work to 
define higher-level interfaces that support common global operations on meshes, fields, and particles and that support mesh 
modifications such as adaptive refinement.  We also will work to support advanced functionality needed for hybrid meshes 
and discretizations.  We will evaluate interface flexibility and efficiency by creating component implementations of existing 
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mesh management packages and testing these implementations in applications, such as the complex chemistry flame 
simulations proposed in [Najm01].  As particular examples, we will create CCA components using the GrACE [Parashar00] 
structured adaptive mesh refinement library and the SUMAA3d [Freitag98] unstructured adaptive mesh refinement codes.  
We also will develop interfaces for interacting with load-balancing, solver, visualization, and I/O components.  

Data Interface Broker. Because no single interface efficiently supports all data types, we will develop a Data Interface 
Broker (DIB) to avoid redundant data transformations and to ease component interconnections.  This memory-resident, type-
safe interface broker component will manage alternative interfaces (or views) of the same data.  This capability, in turn, will 
allow the application code to be formulated as a stream of algorithmic components that each transform the named data 
according to its desired view.  To test DIB functionality, we will develop a prototypical transformation component that can 
extract a named data interface from the broker, create an alternate interface to its data, and contribute the new interface back 
to the broker.  In general, these transformation components would be contributed by domain experts and, initially, be 
manually applied by the application composer.  Because some transformations may entail significant data access overheads, 
we will explore mechanisms to estimate and publish the one-time and recurring transformation costs.  

To ensure the appropriateness of our data interfaces, we will work closely with developers of mesh management software, 
such as those within the proposed TSTT Center (PI: J. Glimm).  We will also work with developers of complementary 
components for data redistribution and solvers. We will broaden our outreach activities to include several ETC teams, in 
particular those involved with solvers and visualization.  Finally, to ensure wide adoption of the technology, we will solicit 
participation from the scientific community through interface specification review, tutorials, and workshops. 

Components for Nonlinear Solvers and Optimization 
Investigators: L.C. McInnes (ANL), S. Benson (ANL) and B. Norris (ANL) 
Collaborators: Terascale Optimal PDE Simulations Center (PI: D. Keyes), Center for Scalable Implicit Nonlinear Extended 
Magnetohydrodynamics (PI: J. Finn). 
 
The scalable solution of nonlinear PDE and optimization problems pervades many DOE computational science applications, 
including fusion [Finn01,Jardin01] and chemistry [Janssen95,NWChem01], and it poses difficult challenges in terms of 
interfaces, algorithms, and implementations.  We propose to explore numerical component design for linear and non-linear 
solvers and related optimization software, as well as low-level service components for managing runtime options, error 
handling, profiling, and tracing.  

Optimization Software.   We will develop parallel optimization components, with initial emphasis on unconstrained and 
bound constrained minimization.  The Toolkit for Advanced Optimization (TAO) [Benson00,Benson00b] will provide the 
foundation for this work.  While this software has broad applicability in many scientific disciplines, research in this proposal 
focuses on collaborations with computational chemists to design interfaces between TAO and the applications MPQC 
[Janssen95,Janssen96] and NWChem [NWChem01].  Our goal is to encapsulate the complementary expertise of 
mathematicians and chemists in well-defined components, so that together, we can address terascale electronic structures 
computations. Since TAO, MPQC, and NWChem have all been designed from their inception using abstract interfaces, we 
have a solid starting point for this work.  We will initially focus on unconstrained minimization problems using Newton-type 
algorithms, where natural interface points are at the levels of function (or, in this case, energy), gradient, and Hessian 
evaluations, as well as application-specific convergence monitoring.  See the Application Integration section for additional 
details.  We will use the interfaces under development by the ESI forum [ESI] for the linear subproblems, thereby enabling 
the incorporation of new advances in parallel linear algebra that may become available in ESI-compliant toolkits under 
development throughout the community.  After completing this initial phase of work, we will consider problems with 
nonlinear constraints and will investigate new optimization strategies that exploit application-specific knowledge. 

Nonlinear Solvers and Derivative Component Factories.  We will develop parallel nonlinear solver components, with 
emphasis on implicit solution strategies using Newton-Krylov techniques within the PETSc [Balay97,Balay00] library.  Such 
methods have proven very effective within large-scale PDE-based problems through synergistically combining the fast 
convergence of Newton-type methods for nonlinear systems with preconditioned Krylov techniques for linear subproblems 
[Anderson99,Gropp00,Mousseau00,Pernice01].  We will focus initially on component interfaces at the level of function and 
Jacobian evaluation, and we will use ESI interfaces for the linear subproblems. In addition, we will develop component 
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factories [Gamma95] capable of generating derivative components for Jacobians (and the related components for applying 
these linear operators to vectors for use in matrix-free methods).  These component factories will compute derivatives via 
finite differences and automatic differentiation [Griewank00] and will build on preliminary work [Abate00] in interfacing 
between the automatic differentiation tools ADIFOR [Bischof96] and ADIC [Bischof97] and the toolkits PETSc and TAO.  
We will also examine the use of component factories for slicing, chopping, and other types of software refactoring. For 
example, a component for computing a nonlinear function (the "input" to the component factory) could be used to generate a 
Jacobian component via automatic differentiation, and unneeded auxiliary computations within the function component could 
be removed via software chopping.  We will evaluate the performance of these tools with a variety of scientific applications. 

Abstract Interface Definition. We will collaborate with ETC and applications groups to develop suites of common abstract 
interfaces for nonlinear PDEs and optimization software.  In particular, we will work with members of the proposed 
Terascale Optimal PDE Simulations Center (PI: D. Keyes) and the proposed Center for Scalable, Implicit, Nonlinear, 
Extended Magnetohydrodynamics (PI: J. Finn) to develop suites of abstract interfaces for parallel Newton-Krylov methods.  
Our goal is to enable plug-and-play functionality for easy experimentation with new algorithmic capabilities, including 
techniques for derivative computations within Jacobian and Hessian matrices, line search and trust region methods, and 
solvers for linear subproblems.  The involvement of both algorithmicists and applications specialists in interface definition is 
critical, as we aim to define interfaces with sufficient generality to support a range of scalable implementation strategies. 

Quality of Service Research.  Component technology facilitates the development of novel algorithms where choices among 
several functionally equivalent components can be made dynamically based on runtime conditions. For example, it might be 
possible to select at runtime among a variety of preconditioned Krylov methods based on problem size, memory availability, 
robustness requirements, etc.  While component standards make it possible to, at least formally, re -use every possible 
implementation of a certain component type in a given program, mismatches could occur between the needs of a client 
component (for example, high accuracy) and the capabilities of a server component (for example, low accuracy). To support 
this dynamic behavior, an important research issue is the specification of the quality of service (QoS) characteristics required 
of and provided by components.  We will develop mechanisms for specifying and predicting the QoS characteristics of 
parallel numerical components, where we define these as the accuracy, robustness, performance, and scalability of the 
component.  We will also investigate how QoS specification mechanisms can take advantage of tools for runtime 
performance prediction and adaptation, such as Active Harmony [Hollingsworth98] and Autopilot [Ribler99]. 

Computational Steering and Interactive Visualization Components 
Investigator: J. Kohl (ORNL) 
 
A fundamental need in many scientific models is the ability to analyze the ongoing behavior of the simulation and to 
maintain its valid progress.  An intuitive approach to this analysis is via interactive visualization.  Data fields being computed 
or operated on by simulation components can be collected and passed to front-end visualization components that render and 
graphically display the data.  This viewing can reveal the current computational state or animate the progress of a simulation.  
We will apply existing visualization technology, such as that provided by CUMULVS [Geist97] and PAWS [Beckman98], to 
develop a general-purpose visualization component for CCA. The resulting component will interface to a variety of 
commercial and public domain visualization tools.  Because simulation components can be parallel, it will be necessary to 
extract parallel datasets from various distributed decompositions.  This capability will be provided by CCA parallel data 
redistribution technology (discussed in the following section), which will pull the desired data elements to provide a viewable 
data subregion, whether at a serial or parallel front-end viewer.  ORNL is also working with SNL and LANL to design a 
specialized service for interacting with the underlying message-passing system in a CCA framework.  Such capabilities are 
useful for high-performance out-of-band communication among CCA components.  The framework service will provide 
component grouping information that would otherwis e be difficult to determine without framework assistance. 
 
While monitoring a simulation using interactive visualization, a scientist may often want to steer or change the course of the 
simulation while it is running.  These changes could take the form of updates to the values of predefined steering parameters, 
adjustments of algorithmic or numerical features, or perturbations of physical parameters in the scientific model.  
Alternatively, the scientist may decide to truncate the execution of malformed simu lations or experiments that have gone 
awry.  We will apply the computational steering interface and protocols in CUMULVS to create a CCA steering component.  
The CUMULVS protocols scatter and synchronize steering requests among all cooperating tasks in a parallel component to 
guarantee that steering updates are applied in unison.  Locking mechanisms also ensure that conflicting updates are not made 
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simultaneously to a given steering parameter.  Front-end methods will be provided by the steering component to enable 
interactive steering from a GUI, as well as automatic steering by software-based controller components.  
 
Fault Tolerance for Parallel and Distributed Computation  
Investigator: J. Kohl (ORNL) 
 
Experience with today's parallel architectures indicates that faults can occur with a frequency sometimes shorter than that of a 
typical simulation run.  We will develop fault recovery mechanisms for CCA that allow uninterrupted execution of extended 
high-performance simulation runs.  We will encapsulate exis ting facilities for fault tolerance, such as those provided by 
CUMULVS [Geist97], to develop components that implement a variety of checkpointing schemes.  These components will 
also oversee recovery of component data after a failure.  We will implement other aspects of fault recovery within an 
underlying framework service.  Fault notification events will be added via a fault monitor service, to provide detection of 
faults and failures.  As part of this service, callbacks will be provided to notify components of failures and to allow automatic 
recovery handling or adapting around the faults.  The service will monitor both computational and network resources within 
the framework, as well as catch software or numerical failures within components. 

Multi-Threading and Load Redistribution Components 
Investigators: C. Janssen, H. Adalsteinsson, and M. Leininger (SNL) 
 
Multi-threading can be a useful way to overlap communication and computation and thus hide communication latencies in 
parallel applications [Nielsen00]. This approach is used in the Massively Parallel Quantum Chemistry package (MPQC) 
[Janssen95], which is being developed into components, as described in the Application Integration section of this proposal. 
As a part of this work, we will develop two general components that provide multi-threaded capabilities: one that represents 
threads and allows users to overlap computations and communication, and one that uses multi-threading to distribute work 
asynchronously to parallel applications and thereby to reduce load imbalances.  

Parallel Data Redistribution and Model Coupling 
Coordinator: J. Kohl (ORNL) 
Investigators: D.Bernholdt (ORNL), K.Keahey and C.Rasmussen (LANL), S.Kohn and G.Kumfert (LLNL), S.Parker (UU) 
Collaborators: Other proposal participants 
 
A core problem faced by high-performance scientific simulations is the coordination of distributed data among parallel tasks. 
Data are often divided into subsets and scattered or copied across parallel components to improve communication patterns 
and locality of access by remote tasks. These data decompositions must be decoded and mapped for data sharing among 
coupled parallel components and for extracting data elements for visualization or checkpointing.  Because each parallel 
component can distribute data on different numbers of processors in unique formats, such data collection can require complex 
redistribution operations.  Tools for parallel data redistribution and extraction are core technologies for reducing the 
complexity of model coupling, visualization, and other parallel data sharing.  Our goal is to enable the efficient composition 
of distinct parallel simulations as well as safe exchanges of parallel data among them.  The set of potential data operations 
can be divided into several transformational "filters" that perform the relocation of data elements, unit conversions, temporal 
and spatial interpolations, and translations among disparate meshes. 

Another related but distinct issue with cooperating parallel components is their ability to invoke methods on each other.  
Functions could be called to perform parallel operations or update state in parallel, possibly returning computed results in 
serial or parallel arrangements.  This capability is referred to as Parallel Remote Method Invocation (PRMI).  Supporting 
PRMI is a problem unique to the CCA, as currently no commercial systems provide such functionality.  The CCA 
programming model requires semantics, policies, and conventions for invoking parallel methods and appropriately 
communicating function arguments and results.  Synchronization is also a fundamental concern to insure consistent 
invocation ordering and parallel data communication, avoid deadlocks, and handle various failure modes. 
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MxN Parallel Data Exchange Using a Two-Pronged Approach 
Developing general infrastructure for parallel data exchange, which lies at the heart of both model coupling and PRMI, is a 
daunting task.  The efficiency and utility of solutions depend on data representations, phases of computation, interaction and 
access patterns, and the underlying framework implementation. The flexible and dynamic nature of component-based 
frameworks exacerbates these challenges.  Data communication among parallel components requires more general support 
than that of a typical, monolithic, parallel SPMD code.  Because scientists can connect pre-existing components at runtime, 
component developers cannot know all possible communication patterns a priori.  For example, a physics component may 
distribute its data across M processors of a supercomputer, while at run time a user may connect this physics component to a 
parallel visualization component that runs on N processors of a graphics computer, where M and N are different.  A 
fundamental research challenge is the development of general infrastructure that supports efficient "MxN" communication 
and parallel redistribution of data between components. 

We will develop a specification and tools for redistributing a variety of parallel scientific data structures.  The tools will 
operate on information provided by application components via scientific data interfaces or by instances of the data interface 
broker (discussed in the previous section).  A number of research projects have addressed parallel data redistribution for the 
special case of rectilinear arrays or other specialized structures.  CUMULVS [Geist97] and PAWS [Beckman98] support 
redistribution among different numbers of processors for arrays and unstructured particle data.  Additional work on PARDIS 
[Keahey97,Keahey97b,Keahey98] demonstrated that parallel communication streams between sets of processors can 
significantly reduce the cost of data redistribution for distributed arrays.  However, general solutions for arbitrary data 
structures do not yet exist, and thus parallel data redistribution remains an unsolved challenge.  The scientific data interface 
effort aims to alleviate this burden by providing specifications and access to data with arbitrary distributions.  Our MxN 
solutions will capitalize on these interfaces to enable parallel data exchange for a variety of meshes and data structures.  We 
will explore the ARMCI [Nieplocha99] library as a messaging substrate on which to build the actual data movement. 

We will consider two distinct, complementary approaches to the interface and implementation of MxN parallel data 
redistribution technology.  Each approach focuses on specific goals in terms of flexibility and user-friendliness.  We will 
pursue both approaches to carefully balance interface simplicity with its extensibility and thereby to address the needs of both 
casual and advanced users. 

In the first approach, we will investigate high-level data redistribution components that reside at the application level, above 
the base framework.  This approach involves the direct invocation of component methods for each operation and thereby has 
considerable flexibility and precise semantics for exerting explicit control over redistribution functions.  This approach is 
extensible because additional components can be independently introduced without modification of the framework or base 
interface specification.  However, the user must assume responsibility for understanding and invoking all data redistribution 
methods from within application components. This approach favors more sophisticated users over non-expert users. 

In the second approach, we will investigate core modifications to component interface descriptions and additional low-level 
framework services that support implicit  parallel data redistribution. This approach hides many of the details from the user, 
but increases cost in terms of framework complexity and some possible loss of generality.  Under this approach, various 
choices for redistribution functions are registered with the framework at configuration time, or built into individual 
component implementations.  These functions are automatically invoked when parallel data movement is indicated, whether 
triggered by parallel component connections or when parallel data objects are passed as arguments to method invocations.  
Each framework instance or component implementation will include configuration parameters and settings to control this 
automatic handling.  In this approach, less sophisticated users need not explicitly translate parallel data references when 
making method invocations.  However, more burden is placed on component and framework developers to supply the 
necessary redistribution implementations. 

Ultimately, the two approaches can be combined given some enhancements to the basic CCA framework services model.  
Implicit redistribution services could share explicit component-based solutions if framework services are made pluggable.  
Similarly, individual method implementations for redistribution could be replaced with proxies to redistribution components 
that would provide the desired functionality.  We will evaluate the advantages, disadvantages, and feasibility of each 
approach.  The following subsections describe these two approaches in more detail. 
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MxN Component Solution 
One solution for parallel data redistribution and model coupling involves the development of distinct, specialized components 
that exchange and translate data.  The core problem when sharing data between parallel components is the mapping and 
communication of the actual data elements.  Each parallel component uses its own data decomposition, according to its 
performance needs and access patterns.  The MxN component will understand these different decompositions and determine 
which data elements should be communicated.  The MxN component will be instantiated into the CCA framework like any 
other user-level component.  All components wishing to utilize MxN functionality will connect to appropriate ports on the 
MxN component.  Any attached components will be permitted to share and exchange data with each other.  The apparent 
bottleneck of routing massive amounts of parallel data through a single MxN component is readily alleviated by 
implementing the MxN component itself in parallel, as shown in Figure 4.  Each thread of a parallel component will connect 
to its own thread of the parallel MxN component, which will perform all necessary data communication internally within its 
own parallel substructure. 

Interfaces for MxN parallel data exchange will describe the data organization in each given parallel component.  This 
includes a specification of the local data layout and allocation for each thread or process, as correlated to the global data 
decomposition to provide a context for the local elements in the effective overall array.  Once this information is known, an 
interface is needed to engage the parallel data transfer.  We will provide methods to register a data field so that it is available 
for parallel exchange, to indicate when a given local data field is ready for transfer, and to request the actual exchange. 

Existing technology for parallel data redistribution employs several synchronization modes. We will generalize these 
alternatives and provide a uniform specification that encapsulates them.  One mode uses simple send/receive semantics to 
coordinate "one-shot" transmissions of parallel data from source to destination.  This explicit approach, such as provided by 
PAWS, allows arbitrary invocations of parallel data redistribution throughout execution.  In this case, although the parallel 
communication schedule can be saved, the actual data channel and inter-component synchronization are not maintained 
between invocations.  Another mode creates a persistent data channel for periodically sending copies of parallel data between 
the source and destination.  This approach, based on CUMULVS, sets up a regular interval for transmitting "frames" of 
parallel data and maintains a loose synchronization among components.  This approach is particularly useful for animation 
using a steady sequence of data snapshots, and for model coupling where two iterative components periodically reconcile 
data.  Each parallel thread automatically sends its next data snapshot at the predetermined iteration count, or "frequency". 

Exchanging elements from parallel, distributed data structures is merely the beginning of true technology for parallel model 
coupling and data sharing.  Depending on the nature of the actual data structures involved, significant translations beyond 
simple MxN data mapping could be needed.  If the source and destination data use different meshes or spatial coordinate 

 
 

Figure 4: Parallel MxN component model coupling an ocean code with an atmospheric code. 
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representations, or are computed in different units or at different time steps, then a pipeline of several translation and 
conversion components will be needed to transform and share semantically comparable parallel data.  A wealth of 
interpolation and sampling schemes are available, although historically, such schemes carry with them an almost religious 
stigma, and there is much debate among scientists on the merits of one approach over another.  We will define appropriate 
component interfaces with hooks to support generic data transformations and conversions.  Given sufficient interface 
flexibility, various implementations can be developed to cover a range of interpolation and conversion algorithms. Guided by 
the specific needs of chemistry and climate applications, among others, we will develop generic conversion interfaces and 
create several components to handle simple data translation schemes. 

An important pragmatic issue is how well redistribution functions "compose" with each other.  Efficient methods are needed 
to apply each data translation by components concatenated in a redistribution pipeline.  We will explore techniques to operate 
on data "in place" and to avoid unnecessary data copies.  We will explore "super-component" solutions by combining several 
successive redistribution and translation components into a single optimized component.  Such work has already been 
explored for numerical libraries [GuL99], and approaches based on scheduling can also improve performance [Keahy00]. 

MxN Framework Service Solution 
Our second approach attempts to hide the application developer or component user from details of remote parallel 
components and data redistribution issues.  In order to simplify software development for the applications developer, this 
approach places more responsibility upon component developers and the underlying CCA framework.  The framework will 
be responsible for data communication between parallel computers, and components will be responsible for describing their 
data layout to the framework. 

The component developer will typically either be hoisting legacy code into a component or creating new software outright.  
The developer will build components by creating interface descriptions and then implementing these interfaces.  To handle 
parallel data redistribution automatically, additional interfaces must be defined and implemented within the component.  We 
will provide several such redistribution interfaces, each implementing a specific type of data redistribution and varying in its 
degree of flexibility and performance.  The developer will choose from among these interfaces and implement the required 
methods based on the component's parallel data input and output needs.   

To support these interfaces at the framework level, we will develop a generic multiplexor (MUX) service. This MUX will be 
responsible for maintaining intimate knowledge of all redistribution interfaces available for each component, and will 
perform the appropriate transformations.  The MUX will generate routing tables and schedules for data redistribution, and 
will handle remote parallel data holder creation and destruction.  The MUX will verify parallel data arguments against the 
user's data layout at method invocation time, and will convert method arguments to match the target data layout before 
method execution.  The MUX will convert any invocation results back into the original data layout before the method 
completes. Because component users will create the actual references to parallel components, any data layout details will be 
implicit in the given user code, and thus will not be directly specified to the MUX.  The users will write the code that utilizes 
"redistribution friendly" components, and ultimately will be responsible for reasonable performance decisions. 

Parallel Remote Method Invocation 
An interface for Parallel Remote Method Invocation (PRMI) is essential for any framework that supports interactions among 
parallel components. A policy is required to define expected behavior for parallel invocations and when handling partial 
execution or failure.  Interfaces must accept both scalar and parallel data for method arguments, as well as for return values.  
Appropriate semantics are needed to interpret such uses, such as whether scalar method arguments are copied to every 
cooperating thread or sent only to a designated one.  The corresponding implementation will be closely tied to the available 
mechanisms for data redistribution and translation.  Coordinating the synchronization of invocations is also important to 
avoid potential pitfalls such as deadlock. 

Our approach to PRMI will have the "look and feel" of standard industry frameworks such as CORBA. However, we will 
apply our data redistribution technology to support parallel data.  We will add grammatical constructs to SIDL to assist with 
the specification and interfacing to PRMI.  For example, we will add a method modifier "local" to indicate whether that a 
method is only meaningful for local references within a parallel component and not for remote component references.  We 
are also interested in developing a high-performance encoding that is interoperable with industry systems.  SOAP [Box00] is 
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an emerging industry standard for encoding interoperable remote method invocations.  The SOAP standard defines how to 
encode remote method invocations using an XML document and then transport them across a network via generic protocols 
such as HTTP or SMTP.  Unfortunately, SOAP does not efficiently encode large blocks of raw data [Govindaraju00].  We 
will investigate extensions to SOAP that add optimizations for efficient large-scale data transport.  We will utilize simple 
software bridges to connect our frameworks to industry frameworks as they become available.  We will also explore the use 
of MIME encodings, which are de facto standards for transferring binary information. 

Integration of CCA into Scientific Simulation Software 
Coordinator: D. Bernholdt (ORNL) 
 
Since the Common Component Architecture is an enabling technology for a broad spectrum of software development 
activities, we will take an active role in promoting and supporting the integration of CCA technology into user software 
following a three-part strategy. Part one involves general outreach to prospective users to increase awareness of the CCA and 
its benefits. All Center members will participate to varying degrees in this effort through papers, talks, tutorials, 
demonstrations, etc. The diversity of experience of Center members will facilitate reaching a broad community. 

We expect many projects to integrate CCA technology into their research programs.  We are already aware of numerous 
projects planning to use the Center's work, as described in Appendix C.  However, CCA software and tools will not be 
“thrown over the fence” to these researchers. As the second part of our strategy, Center researchers will maintain close 
contact with outside adopters, acting both to support the adopters and to insure that the Center receives feedback. Again, all 
Center members will participate to varying degrees, based primarily on expertise and location. Adopters may also make more 
extensive use of the ETC by providing additional direct support to Center researchers; such arrangements are anticipated by 
several projects. 

These activities will be complemented by a focus within the Center on the integration of CCA technologies into applications 
in climate modeling and chemistry.  These are domains of particular relevance to DOE and SciDAC.  There are significant 
opportunities for CCA that would likely be missed without this focused effort. By performing this work primarily within the 
Center (though still in close collaboration with domain specialists), we will also provide an environment in which to examine 
CCA research questions, a tighter loop for feedback on the usability and performance of Center products, and a testbed for 
new tools before they are released to the larger community.  This work will also provide substantial demonstrations of CCA-
based applications for use in outreach activities. 

Application Focus: Chemistry 
Investigators: D. Bernholdt (ORNL), C. Janssen (SNL), T. Windus (PNNL) 
Collaborators: R. Kendall (Ames Lab), A. Wagner (ANL) 
 
Computational chemistry is fundamental to DOE's science mission, from energy efficiency to combustion modeling to waste 
cleanup and environmental remediation.  Terascale computing presents new opportunities in chemistry, not only to address 
larger problems, but also to begin linking models representing different aspects of computational chemistry (i.e., molecular 
dynamics, electronic structure, and kinetics) or different length scales (atomistic calculations, chemical mechanisms, and 
direct numerical simulation).  Because particular codes are often very large and complex (for example, NWChem 
[NWChem01] is in excess of 90,000 lines long and represents more than 100 person-years of development effort 
[Dunning00]), linking them in order to do new science represents a tremendous challenge.  At present, doing so with any 
measure of generality is quite unrealistic.  Component technology, however, can make such a problem tractable. 

Our work with chemistry application software will focus on developing interface specifications and components that will 
offer novel and domain-relevant demonstrations of the power and generality of CCA in creating linkages as described above.  
At the same time, we will provide the Center with important feedback in practical applications.  This work also provides a 
model for other chemistry groups using CCA to make similar linkages [Harrison01,Hewson01,Najm01,Trouve01].  It will 
provide a vehicle to investigate issues regarding multiple implementations of a given component: how they can be described, 
chosen, and used in situations where implementations and behavior may differ significantly at a detailed level (similar to the 
"quality of service" ideas discussed in the Parallel Components Section). 
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We will begin by developing high-level interfaces among several electronic structure methods in NWChem [NWChem01] 
and MPQC [Janssen95] (e.g., SCF, DFT, MP2, and coupled cluster) and ANL's Toolkit for Advanced Optimization (TAO).  
This work will provide componentized tools to optimize molecular structures at given levels of theory, a capability central to 
computational chemistry.  NWChem and MPQC represent the state of the field for massively parallel computers and were 
developed using object-oriented techniques, which will facilitate componentization.  While both packages already include 
several optimization methods, the use of the TAO component will provide "instant" access to the latest optimization 
techniques, thereby freeing the chemists to focus on chemistry.  The development of general high-level interfaces also 
enables a degree of interoperability between the two electronic structure packages, so that users will no longer be limited to 
the set of methods offered by one specific package. 

These high-level interfaces have general utility in this domain and can be used in many more complex applications.  We will 
explore several such applications in greater depth in the second phase of this work.  One area is the determination of 
protein/ligand binding sites and affinities, which has uses ranging from drug development to studying the effects of toxins on 
cells.  Protein/ligand binding studies involve the use of progressively more accurate and more expensive methods to sieve 
potential ligands from a library until a sufficiently small set remains for experimental validation. Using current software 
approaches, users are often forced to accept the limitations of their chosen packages because of the lack of interoperability.  
By using CCA technology, it becomes straightforward to provide access to a wide range of methods from numerous 
packages.  The SNL team will create a CCA-based tool for automated protein/ligand binding studies, utilizing the 
components developed during the first phase (from MPQC, NWChem, and TAO), plus additional methods such as molecular 
mechanics/dynamics, linked by a new driver code. 

A second area of application is the use of electronic structure packages for the direct computation of chemical kinetics.  For 
example, a proposal to the SciDAC Computational Chemistry Program lead by A. Wagner [Wagner01] brings new levels of 
generality, rigor, and automation to the problem.  This work involves an unprecedented degree of coupling of electronic 
structure and kinetics codes, as well as molecular dynamics and new software for discovering and mapping critical regions of 
the molecular potential energy surface (PES).  We will focus initial efforts on the DIRect DYnamics package, DIRDY 
[DIRDY], which gathers electronic structure data for POLYRATE [Corchado00], a variational transition state theory kinetics 
program. We will extend the interfaces developed in phase one to link the electronic structure packages and DIRDY.  This 
work will build on both the code and the experience gained at PNNL in developing the existing "one-off" interface between 
DIRDY and NWChem.  We will demonstrate the generality of this interface by using it to link DIRDY with MPQC, which 
does not currently have such an interface. Our collaborators at Ames Lab plan to implement the same interface for the 
GAMESS electronic structure code [Schmidt93], which has a one-off interface with DIRDY. Since GAMESS development 
began in the late 1970s, it provides a good test of the use of CCA in older applications.  Finally, we will use these 
components and others developed in this proposal (see the Parallel Components Section) as the basis for their new PES 
discovery/mapping capability, which will be built CCA -compliant from scratch. 

The work described so far targets interoperability at fairly high levels.  In the third phase of this effort, we will examine the 
use of CCA at a finer granularity.  This research is important in understanding how to best use component technologies in 
scientific software.  It also offers the potential to completely revolutionize the development of software in fields like  
chemistry.  At present, there are numerous large computational chemistry packages with significant overlaps in functionality.  
But packages typically specialize, offering more computational features than other codes in certain areas, and users are 
essentially locked in to the capabilities of a given package.  Creating standardized interfaces among low-level chemistry 
components opens the way to creating truly interoperable software and ultimately to creating custom tailored applications.  

We will examine this kind of interoperability first in the evaluation of molecular properties.  We will develop interfaces that 
allow MPQC, which currently has only very basic property capabilities, to utilize NWChem's fairly extensive property 
capabilities.  We will also investigate the more complex case of solvation models.  Solvation models attempt to incorporate 
important effects of the solvent environment common in real-world chemical problems into an electronic structure 
calculation at a much lower cost than treating the solvent explicitly.  GAMESS provides a number of sophisticated solvent 
models, while NWChem offers one widely used model and MPQC has none.  Interoperability is more complex in this case 
because the solvent model is more intricately interconnected to other aspects of the calculation.  This example will require 
more extensive involvement of our collaborators at Ames Lab, which may be facilitated by direct support from the Center if 
additional funding becomes available in later years.  If this is not possible, we will chose another low-level interoperability 
example that can be carried out with the original team. 
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Our proposed work with chemistry applications will provide novel CCA-based computational capabilities to that community, 
while at the same time providing important feedback to the development of the CCA itself.  We will pioneer the development 
of general component-based interfaces in this domain and gain valuable experience with the integration of CCA into large, 
complex, pre-existing software packages and the use of third-party numerical components.  Through this work, culminating 
in the low-level interoperability studies, we hope to catalyze a major change in the way computational chemistry software is 
produced throughout the community. 

Application Focus: Climate Modeling 
Investigators: D. Bernholdt (ORNL), J. Larson (ANL) 
Collaborators: J. Drake (ORNL), C. DeLuca (NCAR) 
 
Computational climate modeling is critical to world -wide efforts in understanding the Earth's climate and effects of 
anthropogenic activities.  DOE makes a substantial investment in scientific research in climate modeling and simulation 
through its Climate Change Prediction Program, and DOE researchers are integral to the national community, which 
develops, tests, and uses computational climate models.  Increasing computational power has allowed the climate modeling 
community to improve the sophistication, fidelity, and resolution of their models.  More recently, it has become practical to 
begin coupling models representing different components of the climate system (i.e., atmosphere, ocean, ice, land, 
biogeochemistry, etc.) to exchange time-dependent boundary data, thereby allowing more complex and realistic models of 
the Earth's climate system to be created.  This activity is at a relatively early stage in both scientific and computational terms.  
Computationally, this community is trying to address in a specific context many of the same questions facing the CCA group 
in a more general context, providing an excellent opportunity for a two-way dialog. 

In addition, NASA will soon begin to create an Earth System Modeling Framework (ESMF), an open framework based on 
standardization of interfaces into which climate modeling and related software can be "plugged".  The Common Component 
Architecture has been discussed in several proposals to NASA's ESS/HPCC program as a logical basis on which to build the 
ESMF.  The chance to become involved at the beginning of the ESMF activity represents a significant opportunity for the 
Common Component Architecture.  Throughout the course of this work, we will pay close attention to the evolution of 
activities like the Earth System Modeling Framework and adjust the scope and focus of this effort in order to have maximum 
impact on and input into their development. 

The Center's work in the climate modeling domain will be closely related with the work done with the Community Climate 
System Model (CCSM) [Boville98] under the current Accelerated Climate Prediction Initiative Avant Garde (ACPI-AG) 
effort and the proposed follow-on [Malone01].  Investigator Larson, and our ORNL and ANL collaborators in this work, are 
all members of the CCSM's Software Engineering Working Group (SEWG).  One of the results of the ACPI-AG project has 
been the development of the Model Coupling Toolkit (MCT) [MCTa,MCTb]. The MCT provides a set of low-level 
application program interfaces (APIs) to describe data fields, the grids on which they are evaluated, and their parallel 
decompositions.  The MCT also provides interfaces that support some of the basic operations required in coupling: 
transformation of grids, accumulation and merging of data fields, etc. On top of this, a "coupler" is being developed, which 
involves a combination of high-level management/control of the multiple simulation components and the lower-level data 
management/movement functionality [Kauffman97,Valcke00]. 

We will work closely with the parallel data redistribution and scientific data component efforts (see the Parallel Components 
and Parallel Data Redistribution  sections) to develop general CCA interface specifications incorporating experience from the 
MCT in these areas.  Then, in step with CCA implementations of these interfaces, we will begin incrementally replacing 
existing MCT functionality with CCA-based functionality.  We will retain the MCT interface as far as possible, providing 
adapters to the more general interface of the CCA components underneath. The ability of CCA components to adapt to a 
rather complex existing interface such as MCT will serve as an important test of their usability.  Then, working together with 
the CCSM community, we will begin exposing the direct CCA interfaces to the various climate components and taking 
advantage of other CCA components, like the data interface broker (see the Parallel Components section).  This work will 
provide an opportunity to examine the relative merits of the general CCA-based interface and the domain -specific MCT 
interface in terms of their relative efficiency for software development and performance.  This experience will provide 
valuable guidance on how other projects might approach adoption the CCA MxN redistribution/coupling capability. 



Center for Component Technology for Terascale Simulation Software 22 
 

Model coupling is just one of the many opportunities for CCA in climate modeling systems.  Other areas of interest include 
model diagnostic tools, I/O, and data assimilation. Component technologies can also be used within individual models, for 
example linking the physics and dynamics aspects of atmospheric models.  In the later years of this work, we will expand our 
activities to include one or more of these areas based on an assessment of where we can have the most impact at that time.  
As part of this broader view of the field, we will also work with ETCs focusing on climate [Drake01] and meshing 
[Glimm01] issues to insure that their software is compatible with CCA and, where appropriate, to incorporate it into this 
work at the earliest opportunity. 

Other Applications Areas 
While we have cited specific proposals to help motivate the focused efforts above, the work described is more general in 
nature, and it will provide examples and practical experience that can be applied to other projects adopting CCA.  As 
mentioned, we expect to consult with the majority of projects using CCA technology, but these projects also will be very 
important to the development of the CCA, and therefore will be closely followed.  Based on proposals and projects of which 
we are currently aware (see Appendix C), we expect these applications to include: 

• Use of CCA to develop frameworks for research in reacting flows and turbulent combustion 
• Use of CCA as the framework for problem solving environments in multiscale chemical science, macromolecular x-

ray crystallography, bioengineering, and semiconductor device simulation 
• Use of CCA in the creation of an integrated accelerator simulation environment 
• Development of components and interfaces to facilitate integration of CCA-based applications into collaborative 

environments and problem solving environments 
• Development of CCA -compliant software components in many ETCs  

Deliverables Summary 
We present a brief statement highlighting proposed Center research at each institution, followed by a work breakdown 
summary.  Work during the proposal’s out-years will likely shift somewhat among topics in the work breakdown summary, 
as various projects come to fruition and new research issues arise. Finally, we present deliverables timelines for research in 
frameworks, components, parallel data redistribution, and applications integration.   
 
The following summary highlights individual laboratory and university contributions to the proposed Center: 

• ANL will collaboratively define abstract interface suites for various parallel numerical components and will develop 
CCA-compliant implementations for mesh management, linear solvers, nonlinear solvers, optimization software, 
and low-level services; ANL will also investigate issues in numerical component quality-of-service and will 
introduce CCA technology into climate model coupling. 

• Indiana University (IU) will integrate the CCA standard framework with the appropriate distributed computing 
protocols and services so that CCA components will be able to run as distributed applications on the emerging DOE 
grid; IU will also develop CCA-compliant linear solver components. 

• LANL will collaboratively explore issues in collective interactions between collective components, in particular, to 
develop generic data redistribution components to enable the exchange of distributed data between components. 

• LLNL will contribute in the areas of language interoperability technology for scientific programming languages 
(Fortran 77, Fortran 90, C, C++, Java, Python, MATLAB, and others), the Alexandria component repository to 
deploy component software, and parallel data redistribution research. 

• ORNL will collaboratively design a specification for parallel data redistribution and develop a corresponding CCA-
compliant implementation as well as components for interactive visualization, computational steering, and fault-
tolerance; ORNL will also contribute to parallel data component research and act as a liaison for application 
integration in various domains, including climate and chemistry. 

• PNNL will contribute to parallel data component research and will investigate the use of CCA technology in 
chemistry applications. 

• SNL will develop and deploy a parallel CCA-compliant framework called CCAFFEINE, complete with a 
component deployment environment and components for adaptive structured meshes, multi-threading, and load 
redistribution.  

• The University of Utah (UU) will develop a standard CCA graphical user interface environment, define standards 
for multi-threaded frameworks, and investigate framework-based methods for parallel component interactions. 
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Work Breakdown Summary (with level of effort given in FTE units) 
 

Institution Frameworks  Parallel Components  MxN Applications Total 
ANL Low-level services 0.5 Data Components 

Optimization 
Nonlinear Solvers 

0.8 
0.7 
0.5 

  Climate 0.5 3.0

IU Distributed Framework 1.0 Linear Solvers     0.2     1.2
LANL     Component 0.5   0.5
LLNL Language Interoperability 

Component Repository 
1.0 
0.5 

  Framework 1.0   2.5

ORNL   Fault Tolerance  
Visualization & Steering 

0.5 
0.5 

Component 1.0 Climate 
Liaison 

0.75 
0.25 

3.0

PNNL   Data Components 0.5   Chemistry 0.5 1.0
SNL SCMD Framework 1.0 Data Components 0.5   Chemistry 1.0 2.5
UU Builder Service and  

Thread Safety 
 

0.3 
GUI Component  0.2 Framework 0.5   0.8

Total FTEs                                          4.3  4.4            2.8          3.0 14.5
  

Frameworks Deliverabl es 

'01 '02 '03 '04 '05 
Complete candidate 
SCMD build standard and 
implementation (SNL) 

Adapt strict SCMD 
concepts to  more general 
scheme for HPC (SNL)  

Improve dynamic user 
interaction of SCMD 
framework (SNL) 

Iterate on design and 
improve per user 
requirements (SNL) 

Iterate on design and 
improve per user 
requirements (SNL) 

Complete candidate 
distributed computing 
CCA runtime (IU) 

Integrate Microsoft .Net 
components; release 
initial library of Grid 
service components (IU) 

Release beta version of 
integrated framework to 
applications teams (IU, 
SNL) 

 Release final public 
version of integrated 
framework (IU, SNL) 

Develop XML schema for 
access to Alexandria 
repository (LLNL, SNL, 
IU) 

Add support for remote 
access by component 
framework tools to 
Alexandria repository 
(LLNL) 

Deploy Alexandria 
component repository 
and assist collaborators 
with integrating 
components (LLNL) 

  

Complete Babel language 
interoperability support 
for Python and Java 
(LLNL) 

Add Babel language 
interoperability support 
for Fortran 90 (LLNL) 

Add Babel language 
interoperability support 
for MATLAB (LLNL) 

Add Babel support 
for Perl or other 
languages as needed 
(LLNL) 

Add Babel support for 
COM and dot-NET for 
Windows (LLNL) 

Complete basic 
concurrency standard and 
implementation (all) 

Evolve concurrency 
design per user requests 
(all) 

   

Develop a distributed 
multiplexer and XML 
protocol prototype  
(IU,LLNL,SNL) 

Iterate on SCMD/Grid  
multiplexer per user 
requirements (IU, SNL) 

   

 



Center for Component Technology for Terascale Simulation Software 24 
 

Parallel Components Deliverables 

'01 '02 '03 '04 '05 
Evaluate application 
requirements (all) 

Deploy prototypes, evaluate 
& refine with apps feedback 
(all) 

Evaluate, refine, and 
extend components; 
offer tutorials (all) 

Evaluate, refine, and 
extend components; offer 
tutorials (all) 

Evaluate, refine, and 
extend components; 
offer tutorials (all) 

Develop prototype 
components for 2D/3D 
visualization  (ORNL) 

Develop prototype 
computational steering 
component (ORNL) 

Integrate viz 
components with data 
components (ORNL) 

Extend viz support to 
desktop (ORNL, UU) 

Extend viz to un-
structured, adaptive 
data (ORNL, ANL) 

Develop prototypes for 
multithreaded  (SNL) & 
GUI (UU) components 

Develop load redistribution 
comp; extend multi-threaded  
& GUI comp (SNL,UU) 

Use GUI comp  for viz 
& numerical comps 
(ANL, ORNL, UU) 

  

 Add port fault notification 
and hooks into SCMD event 
service (ORNL, SNL) 

Develop prelim SCMD 
fault monitoring & 
recovery component 
(ORNL, SNL) 

Incorporate fault 
notification hooks into 
Grid event service (IU, 
ORNL) 

Add distrib support 
to  fault monitoring 
& recovery comp 
(IU, ORNL) 

Develop prototype 
components for linear & 
nonlinear solvers, 
optimiz., & low-level 
services (ANL, IU, with 
TOPS center) 

Define interfaces between 
MPQC, NWChem, & TAO 
(ANL, PNNL, SNL); 
develop prototype 
component factory for 
Jacobians/Hessians (ANL) 

Investigate app-
specific comps in 
optimiz. (ANL, PNNL, 
SNL); develop models 
for composing QoS 
characteristics (ANL) 

Develop interfaces for 
multilevel nonlinear 
solvers (ANL, with 
TOPS center); integrate 
QoS system into 
repository (ANL, LLNL) 

Evaluate 
components using 
QoS mechanisms in 
various apps (ANL, 
PNNL, SNL) 

Define interfaces for 
local raw data, distrib 
dense arrays, meshes, & 
fields (ANL, ORNL, 
PNNL, SNL) 

Define interfaces for sparse 
arrays & global ops; release 
preliminary spec for 
scientific data component 
(ANL, ORNL, PNNL, SNL) 

Define interfaces for 
app control of mesh 
modifications, (ANL, 
ORNL, PNNL, SNL, 
with TSTT center) 

Circulate new data specs; 
deploy components 
supporting adaptivity 
(ANL, ORNL, PNNL, 
SNL, with TSTT center) 

Add support for 
hybrid schemes 
(ANL, ORNL, 
PNNL,SNL, with 
TSTT center) 

Develop prototype data 
interface broker & 
transformation comp 
(SNL) 

Extend interface broker to 
work automatically; deploy 
SAMR component in 
combustion app (SNL)  

Perform initial high-
fidelity 3D combustion 
runs using SAMR 
component (SNL) 

Test SAMR component 
with complex flame 
simulation (SNL) 

 

 
 
Parallel Data Redistribution Deliverables 

 
'01 '02 '03 '04 '05 

Develop prototype MxN 
parallel data exchange 
component for structured, 
rectilinear meshes, based on 
CUMULVS technology 
(ORNL, SNL)  

Develop preliminary 
data translation and 
interpolation 
components for 
model coupling 
(ORNL, SNL) 

Develop generalized 
MxN parallel data 
exchange component 
for structured, 
rectilinear meshes 
(LANL, ORNL) 

Evaluate and tune 
MxN parallel data 
exchange component 
in climate and 
chemistry applications 
(LANL, ORNL)  

Develop generalized MxN 
parallel data exchange 
component for structured, 
unstructured, & adaptive 
meshes, based on the 
scientific data comp (all)  

Develop prototype MxN 
parallel data exchange 
component for structured, 
rectilinear meshes, based on 
PAWS technology (LANL) 

Integrate ARMCI into 
MxN parallel data 
exchange component 
(ORNL, PNNL) 
 

  Experiment with 
composite data 
redistribution components, 
optimized for performance 
(LANL)   

Investigate preliminary 
programming models for 
parallel remote method 
invocation (PRMI) (LANL, 
LLNL) 

Add PRMI to Babel 
language 
interoperability tool 
(LLNL) 

Extend PRMI system 
to support parallel data 
arguments via the 
scientific data 
component (LANL, 
LLNL) 

Investigate SOAP 
performance issues 
protocol & improve 
performance for data 
redistribution (LLNL) 
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Application Integration Deliverables 
 

'01 '02 '03 '04 '05 
Liaison (especially 
education and needs 
assessment) with outside   
projects (ORNL lead) 

On-going liaison work 
with outside projects 
(ORNL lead, all 
participate) 

On-going liaison work 
with outside projects 
(ORNL lead, all 
participate) 

On-going liaison work with 
outside projects (ORNL 
lead, all participate) 

On-going liaison 
work with outside 
projects (ORNL 
lead, all participate) 

Define prototype 
molecular energy interface 
(ORNL, PNNL, SNL); 
develop molecular energy 
component adapters for 
MPQC (SNL) and 
NWChem (PNNL) 

Extend molecular energy 
interface & update 
component adaptors 
(ORNL, PNNL, SNL); 
demonstrate integrated 
TAO/electronic structure 
app  (ANL, PNNL, SNL) 

Define protein/ligand 
binding interface 
(SNL) 

Develop and demonstrate 
one-electron property 
interface (PNNL, SNL)  
 

Develop and 
demonstrate 
solvation interface 
(Ames, PNNL, 
SNL) 

 Develop prototype 
DIRDY interface (PNNL) 

Demonstrate integrated 
DIRDY/electronic 
structure app (PNNL) 

Demonstrate advanced 
kinetics application (ANL, 
PNNL, SNL) 

 

Work with data 
components and MxN 
redistribution groups to 
produce standard 
interfaces (ANL, ORNL) 

Integrate data & MxN 
components into MCT 
(ANL, ORNL)   

Integrate MxN data 
transformation 
components into MCT 
(ANL, ORNL) 

Evaluate and tune CCA-
MCT and MxN 
components; expand CCA 
beyond base MCT (e.g., 
model diagnostics, data 
assimilation) (ANL,ORNL) 

Complete prototype 
of full climate 
coupler using CCA 
(ANL, ORNL) 

 

Software Evolution and Distribution 
This project will involve the creation of frameworks, components, and related software by all of the Center members.  
Further, we expect many outside groups use our software and contribute their own modifications.  At the earliest reasonable 
point, we will establish a CVS software repository available to Center members and collaborators. Such a CVS repository has 
already been established that contains the CCA specification, the CCAFFEINE framework, and CUMULVS-based 
visualization components.  Eventually, as the software matures, we expect to open access to a larger community through 
anonymous CVS (checkout only). This type of access will serve primarily developers of core software. 

When tools and components reach a level of maturity consistent with general deployment, we will make them available 
through the web-based repository, Alexandria [Alexandria01], which is under development at LLNL as part of the Center.  
Alexandria will enable CCA software and documentation to be made available through a single unified site to both human 
users and to automated tools, such as graphical component builders.  Component developers will ultimately be responsible 
for user support for their software.  The Center will setup a web-based "trouble ticket" or “bug tracking” system to help 
ensure that support requests are tracked and answered.   The CCA web site [CCA01] will be the primary point of 
dissemination for CCA software and documentation, and it will link to the appropriate CVS and Alexandria repositories. 

Finally, we will need to address licensing issues for collaborative software development by proposal participants, as each 
laboratory and university has its own intellectual property rules and restrictions.  It is our desire to release our software using 
one of the approved open source licenses [OS].  We hope that the Office of Science will provide guidance to DOE 
laboratories with respect to software release issues for collaboratively developed software intended for the general research 
community. 

Subcontract or Consortium Arrangements 

Appendix C summarizes our proposed collaborations with other SciDAC ETCs, SciDAC application groups, and other 
efforts.  Appendix C also includes letters of support from ETC and application groups. 
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Appendix A: Proposal Management 

In this section, we discuss issues associated with the management of this proposal.  In particular, we address the research 
team, management structure, and budget. 

Research Team 
The proposal team includes participants from DOE laboratories (ANL, LANL, LLNL, ORNL, PNNL, and SNL) and two 
academic institutions (Indiana University and the University of Utah).  Proposal participants have a long history of 
collaboration as members of the Common Component Architecture forum, which was formed in January of 1998 to develop 
component technology standards for the DOE.  Since then, members of the CCA have met quarterly to discuss component 
technologies, jointly develop software, write and vote on component software specifications, write research papers, and 
advance the state-of-the-art in component technology for scientific computing. 

Management Structure 
Rob Armstrong will be the Principal Investigator for this proposal and will be the primary point of contact with DOE 
management.  Four technical area leaders will support Armstrong: Scott Kohn (Component Framework), Lois Curfman 
McInnes (Component Software), James Kohl (Parallel Data Redistribution), and David Bernholdt (Application Integration).  
This management team will coordinate technical integration, monitor the project schedule, and report progress on 
deliverables during project reviews.  These individuals, in addition to Dennis Gannon, Steve Parker, Jarek Nieplocha, and 
Craig Rasmussen, will serve as “line managers” of the project personnel at their respective institutions.  We will also create 
an Advisory Committee consisting of Armstrong, the technical area leaders, and representatives from other ETC and 
applications groups to advise our Center on development priorities and user requirements.  Members of the Center will meet 
quarterly as part of ongoing working meetings by the CCA forum, and subgroups will interact frequently via in-person visits 
and meetings using the Access Grid. 

The proposal team has a history of collaborative research and development with Armstrong as leader of the Common 
Component Architecture forum.  We have already developed a formal mechanism for proposing, voting, and adopting 
standards specifications using the LLNL Quorum voting server (http://www-casc.llnl.gov/quorum). 
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Appendix B: Facilities and Resources 

Researchers in this proposal will require desktop computing resources and access to high-performance massively parallel 
computing system.  Desktop resources are provided by individual institutions.  High-performance computing resources are 
available at all facilities, and researchers will also have access to resources at other institutions.  Some institutions provide 
Access Grid nodes for group-to-group collaboration environments, which will simplify communication among participants. 

Argonne National Laboratory 
Facilities in the Mathematics and Computer Science Division of Argonne National Laboratory include three major parallel 
computing systems, I/O subsystems, visualization subsystems, advanced display environments, collaborative environments 
and high capacity external network links. A 552-CPU Linux cluster, a 128-processor Silicon Graphics Origin 2000/Onyx 2 
system with 12 Infinite Reality 2 graphics pipelines, and an 80-node IBM SP serve as the primary computation engines and 
are supported by hierarchical storage with approximately 2.5 TB of disk and a 60 TB tape robot. The SGI serves as the 
primary visualization server in addition to its use for large computational science experiments. All subsystems, as well as 
desktop workstations and various servers, are interconnected at gigabit ethernet speeds. 

For high-end visualization, MCS maintains multiple immersive virtual reality devices including a 4-wall CAVE and 4 
ImmersaDesks connected to a video-switching infrastructure that allows the display devices to be driven by either the SGI 
Onyx 2 or the Linux cluster. MCS also has three large-format mega-pixel tiled displays, one with ~11 million pixels, and two 
compact versions with ~3 million pixels each. 

In addition, MCS currently supports four group-to-group collaboration environments (Access Grid nodes). The Access Grid 
is an ensemble of resources that supports group-to-group human interaction across the Internet. It consists of large-format 
multimedia displays, presentation and interactive software environments, interfaces to middleware, and interfaces to remote 
visualization environments. The Access Grid promotes group-to-group collaboration and communication for 3 to ~20 people 
per site with 2 to ~10 sites per session. Large-format displays integrated with intelligent or active meeting rooms are a central 
feature of Access Grid nodes.  

Indiana University 
The distributed systems research group has access to a wide range of workstations and several significant university research 
systems including a 64 processor Sun E10000, a 64 processor Linux cluster and a 184 processor IBM SP-2.  We also have 
two HPSS auxiliary storage systems.   This project will have access to all of these resources.  

The departmental network consists of Gigabit Ethernet and 10Gbps aggregate bandwidth ATM backbones with workstation 
and server connectivity provided by a gigabit ethernet, 622Mbps ATM, 155Mbps ATM, 100Mbps fast ethernet, and 10Mbps 
ethernet connections. The department has a 100Mbps fast ethernet connection with the campus backbone, which provides 
high-speed access to university computing resources, including the Virtual Reality/Virtual Environment Facility (CAVE), 
and Internet, vBNS, and Internet2 network access. Network services available within the department include laser and color 
printing facilities, CD-ROM access and recording, scanners, video, and various media storage facilities.  

Indiana University hosts the network operations center for the Abilene Network, which is the backbone for Internet 2.  
Consequently, we have excellent connections to all major, non-classified research networks. 

Lawrence Livermore National Laboratory 
Lawrence Livermore National Laboratory provides its computational researchers with desktop workstations, visualization 
servers, and high-performance computing resources.  Researchers may access institutional resources such a Compaq 
AlphaServer cluster with 80 processors and 56GB of memory, an updated Compaq AlphaServer cluster with 136 processors 
and 80 GB of memory, a Linux cluster, a Sun Enterprise 6000 system, and associated high-performance storage resources.  
Researchers may also access the ASCI IBM massively parallel platform through arrangements with the ASCI program. 
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Los Alamos National Laboratory 
Facilities in the Advanced Computing Laboratory (ACL) of Los Alamos National Laboratory provide access to a high-
performance computing environment that includes: 

• the largest unclassified computer in the world, the ACL Nirvana Machine, a 1-TeraOp peak speed SGI Origin 2000 
system with one half terabyte of memory;   

• the Little Blue Penguins cluster, a 128-node Pentium Pro cluster system running the Linux operating system and 
interconnected with Myrinet; and 

• the largest unclassified, integrated visualization system in the world centered around 10 clustered SGI Infinite 
Reality systems attached directly to the ACL Nirvana Machine. 

 
In addition, each investigator in the ACL is provided with a Linux desktop workstation attached to a 100-megabit ethernet 
network connecting to the rest of LANL and the outside world. 

Oak Ridge National Laboratory 
The Computer Science and Mathematics Division of ORNL operates substantial computer facilities, including desktop 
workstations, file and computer servers, all of which are connected to the ORNL site network.  ORNL is connected to the 
DOE ESNet-3 through an OC-12 link. These will be the basic tools required to complete the research described.  

The Computational Sciences (CCS) at the Oak Ridge National Laboratory provides state-of-the-art resources for high-
performance computational science and computing science research.  The primary computational resources currently include 
a 184-node, 724-processor IBM RS/6000 SP and a 64-node, 256-processor Compaq AlphaServer SC, each with over two 
terabytes (TB) of system-wide disk storage. Additional systems include a 16-node, 64-processor AlphaServer SC test system, 
a 32-processor SGI Origin for visualization, and various support servers. Center-wide storage is available in the form of the 
Distributed File System (DFS) and the High-Performance Storage System (HPSS), with 360 TB of archival storage. 
Internally, our systems are connected with gigabit ethernet. The Probe storage test bed, which provides additional high-end 
file servers and network bandwidth to other DOE laboratories augments this production infrastructure.  The VizLab serves 
the CCS users=92 visualization needs with everything from charts and graphs to animations to fully immersive environments 
using our Immersadesk and Cave. 

 Planning is underway to upgrade the large AlphaServer SC to 128 nodes in the spring of 2001, which would bring the 
aggregate peak computational power of the CCS to 2 teraflops (TF). Long-range plans to field a 10-TF production system in 
2003 are under discussion with DOE.  

Pacific Northwest National Laboratory 
Pacific Northwest National Laboratory provides its researchers with desktop workstations, visualization equipment, and high 
performance computing equipment.  Access to institutional and external computing facilities is provided by high capacity 
network links. 

Sandia National Laboratory 
Sandia National Laboratory provides all necessary desktop workstations, visualization equipment, and high performance 
computing equipment, connected by an internal high capacity network. Access to external computing facilities is provided by 
external high capacity network links. 

University of Utah 
The Department of Computer Science Computing Facility is configured to support both instructional and research computing 
through a network of a few hundred workstations including Unix workstations from Hewlett-Packard, Silicon Graphics, IBM, 
Digital Equipment, and Sun, plus Windows NT (Intel) personal computers. These machines are supported by 30 
file/application servers that provide 700 GByte of disk storage via both NFS file systems and 40 GByte of application 
replicated across five AFS servers.  In addition to this full complement of workstations, the individual research laboratories 
contain a wide array of specialized equipment including a 32-processor SGI Origin 3000 with infinite reality graphics. 
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The Department of Computer Science also has a professional-quality video editing facility, a mobile robot, image capture and 
processing equipment, and a shared machine shop with a variety of NC milling machines/lathes/EDMs, and CMMs for 
CAD/CAM development. 

Utah is the site of the first SGI Visual Supercomputing Center.  The site is home to a 64 CPU Origin 2000, and a 40 CPU 
Onyx2 (with eight Infinite Reality graphics engines), and will be used in conjunction with the proposed desktop and cluster 
machines to carry out the proposed research. 

 The Scientific Computing and Imaging (SCI) Institute has ongoing research projects in many areas of scientific computing 
and imaging: geometric modeling, numerical analysis, parallel computing, problem-solving environments, scientific  
visualization, human-computer interaction, medical imaging and software development tools.  The Institute is involved both 
in designing efficient and accurate tools for scientific computing, and in utilizing these tools for scientific applications. 

Beyond the computing facilities within the SGI -Utah Visual Supercomputing Center, the SCI Institute has the following on-
site facilities: 
 

• SGI Origin 3000 (32 CPUs, 1 Infinite Reality graphics engine) 
• SGI Power Onyx (14 CPUs, 2 RE2 graphics engines) 
• SGI Origin 200 Server (4 CPUs) 
• SGI Origin 200 Server (2 CPUs) 
• Over 30 SGI Octanes, Indigo2s, O2s 
• Numerous Linux PCs and Macs 
• An Access Grid node 
• 2.9 Terabyte RAID Array 
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Appendix C: Collaborators and Letters of Support 

The following is a list of projects and proposals that plan to use Common Component Architecture technology and 
collaborate with the Center.  We expect this to be a representative, but by no means complete, list of groups who will be 
working with us as they integrate CCA technology into their efforts.  Principal investigators from these efforts have written 
letters expressing their interest in collaborating with the Center; these letters follow. 
 

Title Lead PI Participating Institutions Program 

Terascale Optimal PDE Simulations 
(TOPS) Center 

David Keyes (Old 
Dominion) 

ANL, CMU, LBNL, LLNL, Tennessee, 
UC Boulder 

SciDAC ISIC 
(01-07) 

DOE Visualization Software 
Infrastructure Center 

Rick Stevens (ANL) ANL, LANL, LLNL, UC Davis, 
University of Utah 

SciDAC ISIC 
(01-07) 

Terascale Simulation Tools and 
Technologies Center 

Jim Glimm (SUNY 
Stony Brook) 

ANL, LLNL, ORNL, RPI, PNNL, SNL SciDAC ISIC 
(01-07) 

A High-Performance Software 
Framework and Interoperable 
Applications for the Rapid 
Advancement of Earth System Science: 
Part I: Core Earth System Modeling 
Framework Development  

Tim Killeen (NCAR)  ANL, LANL, Michigan, MIT, 
NASA/GSFC, NCAR, NCEP, NOAA 

NASA 
ESS/HPCC  

A Grid-Based Collaboratory for 
Macromolecular X-Ray 
Crystallography Using Synchrotron 
Light Sources 

Randall Bramley 
(Indiana) 

ANL, Indiana SciDAC 
Collaboratories 
(01-06) 

A Computational Facility for Reacting 
Flow Science 

Habib Najm, (SNL) ANL, Colorado, FORTH (Greece), 
SNL, Terascale, UC Berkeley, UC 
Davis, U Roma (Italy) 

SciDAC 
Chemistry 
(01-08) 

Center for Scalable, Implicit, 
Nonlinear, Extended 
Magnetohydrodynamics 

John M. Finn 
(LANL) 

LANL, LLNL SciDAC Fusion 
(01-10) 

Increasing Interoperability of an Earth 
System Model: Atmosphere-Ocean 
Dynamics and Tracer Transports  

Carlos R. Mechoso 
(UCLA) 

LANL, NASA/JPL, LANL, UCLA  NASA 
HPCC/ESS 

Shedding New Light on Exploding 
Stars: TeraScale Simulations of 
Neutrino-Driven Supernovae and their 
Nucleosynthesis  

Anthony 
Mezzacappa (ORNL) 

ORNL, SUNY, University of Chicago, 
University of Tennessee, Knoxville, 
NC State, University of Washington, 
Clemson, NCSA, UCSD, Florida 
Atlantic University, UIUC 

SciDAC HENP 
(01-11) 

Terascale High-Fidelity Simulations of 
Turbulent Combustion with Detailed 
Chemistry 

Arnaud Trouve 
(Maryland) 

Maryland, Michigan, Pittsburg 
Supercomputer Center, SNL, 
Wisconsin 

SciDAC 
Chemistry 
(01-08) 

Advanced Software for the Calculation 
of Thermochemistry, Kinetics, and 
Dynamics 

Albert F Wagner 
(ANL) 

ANL, Minnesota, Wayne State, SNL SciDAC 
Chemistry 
(01-08) 

Center for Terascale Code Design and 
Development Environments 

Jim Kohl (ORNL) Ames Lab, Georgia Tech, Iowa State, 
Michigan State, Oregon, ORNL, 
Virginia Tech 

SciDAC ISIC 
(01-07) 

Center for Collaborative Problem 
Solving in the Earth Sciences 
Community 

Debbie Gracio 
(PNNL) 

ANL, Michigan, NCAR, ORNL, 
PNNL 

SciDAC 
Collaboratories 
(01-06) 



Center for Component Technology for Terascale Simulation Software 39 
 

Title Lead PI Participating Institutions Program 

Research on Secure Collaborative 
Environments for Modeling On-Chip 
Copper Metallization 

R. C. Alkire (Illinois) Illinois  NSF ITR  

Data Parallel Component Software Steve Parker (Utah) Utah NSF ITR  
CardioPSE: Computational 
Bioengineering of the Heart  

C. Johnson (Utah)  Indiana, ORNL, Tennessee, Utah NSF ITR  

Integration efforts for NWChem and 
GAMESS software 

Ricky Kendall Ames Laboratory N/A 

Need for component technology in 
ASCI program – future collaborations 

John Ambrosiano Los Alamos National Laboratory N/A 

C-SAFE ASCI ASAP Center David Pershing University of Utah N/A 
Computational Workbench 
Environment for Virtual Power Plant 
Simulations 

Michael Bockelie Reaction Engineering International Vision 21 

    
 


