
The CCA Core Specification In A Distributed Memory
SPMD Framework

Benjamin A. Allan, Robert C. Armstrong1, Alicia P. Wolfe, Jaideep Ray

Sandia National Laboratories, Livermore California,
{baallan,rob,apwolfe,jairay}@ca.sandia.gov

David E. Bernholdt and James A. Kohl

Oak Ridge National Laboratories, Oak Ridge Tennessee
{berholdtde,kohlja}@ornl.gov

Abstract
We present an overview of the CCA core specification and CCAFFEINE, a
Sandia National Laboratories framework implementation compliant with the draft
specification. CCAFFEINE stands for CCA Fast Framework Example In Need of
Everything; that is, CCAFFEINE is fast, lightweight, and it aims to provide every
"framework service" by using external, portable components instead of
integrating all services into a single, heavy framework core. By fast, we mean
that the CCAFFEINE glue does not get between components in a way that slows
down their interactions.

We present the CCAFFEINE solutions to several fundamental problems in the
application of component software approaches to the construction of SPMD
applications. We demonstrate the integration of components from three
organizations, two within Sandia and one at Oak Ridge National Lab. We outline
some requirements for key enabling facilities needed for a successful component
approach to SPMD application building.

Keywords : Common Component Architecture, high performance computing,
CCAFFEINE, peer components, SPMD, framework.

1 Corresponding author. Dr. R. Armstrong, MS 9217, PO Box 969, Sandia National
Laboratories, Livermore, CA 94551−0969. Phone : 925−294−2470, Fax 925−294−1225. Email
: Rob@ca.sandia.gov.

1

1. Introduction: Peer Components In The SPMD World

1.1 Background
Currently, the dominant means for writing HPC programs is to create a "hero"
code, where all of the numerical and domain−specific algorithms are hand tooled
into a single monolithic application which also includes many generic support
routines. Usually one or possibly a few people are active contributors to the
code, and they are the only ones intimately familiar with that code. This state of
affairs has the effect of limiting the size and scope of parallel simulations to what
a handful of people can produce. Although parallel machines are almost
commonplace, thanks to the advent of usable cluster technology, the ability to
take advantage of them is limited largely to embarrassingly parallel (EP)
implementations. The most widespread examples are parallel web servers and
especially search engine clusters.

Currently, separate HPC codes recreate and debug the same parallel algorithms
from scratch. Also, the operation and maintainence of the code relies on the
knowledge contained in the minds of just a few individuals. The open source
movement has been startlingly successful at pulling together programmers from
disparate fields and locales to work on a single highly complex piece of code.
Although this movement had its beginnings in the very university and scientific
marketplace that also developed with HPC, one cannot imagine how an open
source approach could be used to create a complex HPC application using
today’s practices in parallel programming. Parallel HPC is still the province of a
few "hero" programmers willing to take responsibility for everything that occurs
within the application.

We propose that the solution is to adopt modularization, i.e. componentization.
There are a host of examples for this in the commercial world. There are
examples of programs in the scientific domain that exhibit wide−spread
cooperation on a single code system: AVS, Matlab, netlib, [1−3]]and a host of
other largely serial scientific subroutine libraries. These have contributions from
a wide community of researchers in their respective fields. However, parallel
computing has characteristics that resist the modularization which makes wide−
spread cooperation possible.

By definition, data shared by components must be spread across multiple
processors to which all components must have access. Second, the mechanism
for connecting components together must preserve performance and be free
from the insulating glue layers common in commercial frameworks and
component systems. The latter is the most difficult to overcome. Each
component must be aware that the per−processor decomposition of the data
exists and must conform its particular computation to that decomposition.
Redecomposing the data to suit each component will degrade performance

2

prohibitively.

There are a number of parallel scientific software frameworks that seek to
overcome these problems. POOMA, Sierra, Overture, HYPRE, GrACE, PetSC,
and Uintah [4−12] are all frameworks for parallel computing that provide a
system to automate parallel computations restricted to a particular scientific or
numerical domain. POOMA, HYPRE, and PetSC provide a data model for the
processor decomposition, allowing for user initialization and access to that data
and providing primitives in the form of function calls or language constructs to
create a parallel program. In each case these frameworks provide primitives at
the top layer that will invoke labor saving machinery underneath to get the
parallel work done transparently.

Grace [9,10] and Uintah [12] are probably the closest to the work described
here. Grace, has no underlying component model but does not preclude it. It
provides a data model and an interface for other code modules to use. How the
work is synchronized and otherwise orchestrated is up to the user. It does not
attempt to provide numerical primitives beyond that which its structured mesh
data model provides. Uintah is the most similar to the framework we present
here named CCAFFEINE. It shares with CCAFFEINE the idea of single
component multiple data (SCMD) style of parallel computing, exploiting a peer
component model. This is not by accident since both strive to be compliant with
the emerging Common Component Architecture standard [13]. Generally,
Uintah seeks to be a more heavyweight framework that provides many services
in support of its components. CCAT [14] is another CCA compliant framework
focussing on distributed object style computing in a HPC context. Though its
domain of applicability, Internet−style distributed computing, is orthogonal to the
work presented here, the CCAT design has a lightweight CCA−compliant
framework implementing the provided services with (sometimes rather heavy)
components.

In this paper we will present explorations with concepts in object−oriented peer
components for parallel computing using the Common Component Architecture
standard. Although the POOMA and OVERTURE frameworks for parallel
computing are object−oriented, they are not based on peer components. In the
peer component model, components are viewed as equal participants rather
than as elements in an inheritance hierarchy. This peer approach is familiar in
commercially available component systems and has become hugely successful
in that arena. Visual Basic, Java Beans, the CORBA Component Model, and to
a lesser extent, Enterprise Java Beans (now renamed to EE2J) [15−18] all are
examples of this approach. In particular, Java Beans is a good example
because it requires almost no supporting infrastructure, just a component
specification for attaching one bean to another. Arguably, the feature that all
these component models share that has lead to their success, is the ease with
which more components can be added: their extensibility.

3

CCAFFEINE consists of less than 200 lines of code for just the component−
connecting glue logic of the framework. This framework, along with some
additional code for parameter setting, is all that is necessary to link components
together and bring them into a executable state. As mentioned, there is missing
functionality that the more heavy−weight system approaches provide, and this
must be made up by specialized components. Admittedly, this approach is much
less automatic than the system approaches mentioned above. The hope is,
however, that what it lacks in built−in features, it makes up for in extensibility.

1.2 Common Component Architecture (CCA) Specification and
Mechanisms
This is a brief overview of the component model and composition mechanisms
which the CCA specification provides. Our intention is to provide enough
information about the CCA specification to describe how CCAFFEINE, our CCA
compliant framework, uses it to compose SPMD applications from components.
SPMD parallel computing is arguably the most widely used pattern in HPC.
Being able to compose SPMD applications from CCA components is a sizable
reason for the existence of the CCA, and it is the sole reason for creating
CCAFFEINE. The specification consists of two parts:

1. the core specification, which allows an abstract interface presented by one
component to be used by another, and

2. standard ports, standard interface specifications that are exported to
components from a CCA compliant framework or other components.

As of this writing, only the core specification has been approved [19].

There are two primary CCA specification features that are relevant to this work:
� The Uses/Provides connection design pattern that allows one component to

invoke another component’s methods.
� The CCA Component interface that requires only a single method be added to

an existing object class to make it a CCA component.

In comparison to other component models and systems, the CCA architecture is
lightweight and simple to use. It is normally viewed as an add−on to existing
parallel software, bringing a measure of interoperability to otherwise monolithic
HPC codes. It is hoped that the small "surface area", the single interface and
its member function constituting the component model, will make the CCA
standard attractive for scientists and engineers to use for new parallel codes as
well. The CCA mechanisms can also be used to bridge between compliant HPC
components and more familiar component systems, such as Java Beans or the
new CORBA Component Model.

4

Most importantly, the CCA specification allows the preservation of performance.
While the CCA interface exchange mechanism admits interfaces (Ports) that are
proxies for remote objects, its default CCAFFEINE behavior is to move
interfaces directly from one object to another. This makes the latency overhead
for using components equivalent to one virtual function call when using C++.
The specification avoids dictating anything about communication to processes
outside the current address space (i.e. outside the current process) in which the
component is instantiated. This gives the widest possible latitude to the
developer of an HPC component in selecting the message−passing, shared
memory and other communication mechanisms required by the algorithms being
encapsulated.

Figure 1 illustrates the CCA mechanism for connecting two peer components
together using the Provides/Uses design pattern. A framework−generated
Services object, encapsulating framework services, is given to each component
immediately after instantiation (the green Service box inside each blue
component).

1. The components add interfaces (Ports) they are going to export to the outside
world to the Services object.

2. Each component also registers, with the Services object, ports that it will
need.

3. The user framing the application then causes the framework to "connect" the
two components resulting in the provided port being transferred to the second
using component’s Services object.

4. The second component then uses its Services object to retrieve the port
provided by the first. The retrieved port is now available for use by the
second component (Component 2).

Currently the CCA specification is not concerned with computer language
interoperability. A separate HPC interface definition language called Scientific
Interface Definition Language, or SIDL [20,21] is being developed and this is
expected to provide language interoperability for CCA ports. Since the CCA
specification is defined only in terms of interfaces, it is expected to be expressed
entirely in terms of SIDL when the appropriate bindings are complete (see [19]
for examples). In this section, we have not addressed the details of how an HPC
parallel application can be composed out of CCA components and how the same
CCA core specification can be used to link an application with more loosely−
coupled distributed objects − these can be found in a previous paper that deals
with just the specification itself [13].

1.3 Single Program Multiple Data Components
The single program multiple data (SPMD) pattern of parallel computing is
certainly the paradigm of choice for high−performance computing. This can be

5

defined as a single identical program for each participating process, where the
data acted upon by that program varies across the processes. Here we make a
trivial extension to that pattern and sub−divide the program into peer
components. Each peer CCA Component instance is representable by a single
local memory pointer. A peer component communicates via Ports with other
components in the same address space and communicates via a process−to−
process protocol (e.g. MPI) within its cohort, the SCMD (Single Component
Multiple Data) set of corresponding components on all P processors. We
assume that there are no Port connections or messages passed between
different components instantiated on different processors, that is no diagonal
lines are allowed in Figure 2.

In the next section we describe how CCAFFEINE, our CCA−compliant
framework composes SPMD applications from components. The ability to
compose such HPC applications is a major reason for the existence of CCA and
the sole one for CCAFFEINE.

2. The CCAFFEINE Paradigm For SPMD Components
Creating a single CCA−compliant framework that supports all possible parallel
architectures both equally and well is a tremendously daunting task. Therefore,
we limit our effort with CCAFFEINE to:

1. creating a framework and programming model that supports the distributed
memory message passing SPMD computing architecture.

2. supplying most framework services via other components.

We make the following key assumptions in our SCMD model :

1. Distributed memory with message passing.
2. Within a SPMD instance of the framework, all Components and Ports

exist on all nodes, and any Port used by the framework on one node will
be identically used on all nodes.

3. The framework runs and components interact in a single execution
thread on each node.

4. Support for runtime linking (dynamic loading) of components is required
to simplify framework executable maintenance.

5. Dynamically loaded components are loaded into private symbol tables to
reduce linking errors.

6. One person (or script) controls at a time.

2.1 Framework implementation details

The CCA framework part of CCAFFEINE is written in C++ and one front end is a

6

graphic user interface written in Java. In the CCAFFEINE framework, it is
assumed that each component object is instantiated in parallel, on every
participating processor. SPMD components can be connected together in any
way so long as the network of connections is identical on each processor. All
component instances and the framework reside within a common process thread
for each participating processor. All connections are made directly by passing
ports (pointers to pure virtual interfaces) according to the CCA specification.
Figure 2 shows a network of connected components residing in the same
address space in a configuration that is identical on every participating
processor. This means that within a participating processor, each component is
at most a virtual function call away from its connected peer components.

Because message−passing is a defining part of many parallel algorithms,
components that encapsulate those algorithms for future use must be allowed
the greatest latitude to communicate with the other instances in their cohort. For
a component framework to be portable in the HPC arena, it must not dictate too
strictly how and when communication is done. For this reason, the only
stipulation on communication is that a component is restricted to communicating
in a SPMD fashion within its own cohort. CCAFFEINE is uninvolved with this
communication.

The CCAFFEINE framework is structured in such a way that each processor has
its own instance of the framework. The framework can be viewed as a container,
or a component that holds other components. This per−process framework has
no need to know of its cohort on other processors, and it is not required to
communicate with them. Indeed this view of SPMD frameworks points the
direction for aggregating large scale integrated applications on parallel
processors. It is generally recognized that peer component models, parallel and
otherwise, must have a container concept to scale to large and complex
applications.

2.2 Controlling The SPMD Components And Framework
Though the SPMD framework is the functional and most important part of
CCAFFEINE, a mechanism must be provided to bootstrap the system and to
communicate with it from a single source interactively or in batch. It is an
important part of the CCAFFEINE design philosophy that all of the component
interactions behave as if it were a serial application. We followed the basic
model−view−controller pattern to separate several interactive user interface
implementations and parsers from the CCA framework implementation. The
SPMD framework accepts string commands (see [22] for an example) and
arguments for instantiating and connecting components. These can be typed
from a terminal for debugging, but usually the commands are received over a
socket. The command syntax is line−oriented.

Since we wish only a single controller, commands must be multiplexed and

7

committed to every processor in the same order, so that the pattern of the
components and interconnections remains identical on all of the participating
processors. This string−based interactive system avoids the necessity of
assembling all the components during the framework link, and it preserves the
ability to represent the program as a batch script. The interaction sequence
proceeds as follows :

1. a command−line or equivalent graphic user interface (GUI) is connected to
the MuxingProcess via a socket or stdin as shown in Figure 3(a), and

2. strings received are duplicated and fanned out to each of the SPMD
frameworks on the participating processors.

3. The SPMD frameworks perform their actions, with presumably identical
results, and report back through the socket.

4. The MuxingProcess compresses this response and emits a single result back
to the command line, deleting the duplicates. In this way each participating
process, except for the MuxingProcess, can remain aloof to the existence of
the parallel nature of the machine. We confine the information regarding the
true parallel nature of the machine within the MuxingProcess.

A number of questions arise as to the efficiency and efficacy of this arrangement:

1. What if there is a problem on one processor and the results from one SPMD
framework instance do not sufficiently match the others?

As currently implemented the CCAFFEINE framework will exit as no fault
tolerance is built in. The MuxingProcess, however, has a plug−in capability to
filter the incoming and outgoing streams, and thus more sophisticated
behavior is possible. For now we take the view that if the parallel machine is
working properly there will never be a disparity in returned string results. Thus
if the parallel machine is broken, fixing it in software should not be attempted.

2. What about scalability? How many sockets can the MuxingProcess handle
without incurring a large penalty?

The MuxingProcess is written to be self−similar. MuxingProcesses can be
cascaded in a fat tree as shown in Figure 3(b) or even a hypercube. While
not linearly scalable, this mechanism will produce fan−ins and fan−outs in
~log2P time, P being the number of processors. This is commonly accepted
as "scalable enough" in parallel computations. At any event, this multiplexed
communication is only used for setup and management of the overall process.
It is not the mechanism for communication that the components are expected
to use, and therefore does not need to be high−performance.

3. What if a process needs to be deleted or moved, or what if the user wants to

8

probe the value of the data on a particular processor?

Currently CCAFFEINE does not provide for this sort of behavior, but it is
something that the software design should support. Here expanding the
MuxingProcess would enable routing requests to a particular SPMD
framework peer or a subset of peers. This is in keeping with the current
design by concentrating all of the parallel information in the MuxingProcess.
Probing general user data, data other than that concerning the assembly of
the components, is of course the province of another snooping or steering
component, not the framework.

2.3 A GUI using the fully separable controller design
Though the framework can be used in a command line mode, a Java front−end
GUI (Figure 5 and 6) is provided with CCAFFEINE that models the CCA
Uses/Provides design pattern with a simple visual metaphor. The GUI is
separable from the SPMD C++ framework and runs in its own process. Like the
SPMD framework, the GUI is unaware that it is orchestrating the actions of
possibly thousands of identical processes on a large cluster. The GUI only
knows how the Uses/Provides design pattern works. It issues the appropriate
string commands in response to the user’s mouse activities. The GUI just takes
the place of typing in a script syntax at the keyboard. This keeps the
CCAFFEINE design simple by organizing it into separable and interchangeable
parts. Debugging is also simplified because a test system can be run on a single
workstation by pairing the GUI and a single SPMD framework. Barring errors in
the parallel implementation of the components themselves, the user can do this
knowing that the entire massively parallel component system will behave in
exactly the same way as a single process workstation. The GUI also provides a
scripting facility that logs the user actions and writes them to a re−loadable
script. Thus the system is designed to accommodate a variety of front ends, all
of which using the line−oriented command strings at their back end.

Taken together, the front−end, GUI and the SPMD framework provide a way to
compose and run parallel simulations dynamically. We expect that the use of a
parallel machine in this dynamic fashion would be initially limited to small
clusters, and then only for experimentation, debugging and testing. Once a
script is successful on that platform, it could be run in batch mode on a large
machine, using the queuing system that it normally provides. The CCAFFEINE
framework and the example code in the following section make a strong case for
a better way to develop and debug HPC simulations, even if its interactive use is
confined to a single processor or a small cluster.

In this section we described the CCAFFEINE CCA framework implementation
and the architecture of its builders and controller. In the next section we present
a non−trivial application successfully implemented by the composition of CCA
components in the CCAFFEINE framework.

9

3. An Application Example: Reaction−Diffusion on a
Parallel Cluster

3.1 Introduction to the example simulation
This section will present a concrete example of how non−trivial scientific
simulation codes can be assembled from CCA−compliant components. The
particular physical problem chosen is a reactive−diffusive system. These
systems are representative of a variety of physical systems (e.g. flames),
manifest moving coherent structures (e.g. fronts) and are characterized by two
vastly different sets of time and spatial scales associated with diffusion and
reaction. The need to resolve the entire spectrum in a simulation places a severe
challenge on numerical methods and computational infrastructure.

This parallel simulation facility was developed to satisfy the following
requirements:

1. To prove the feasibility of constructing large multi−physics, parallel codes from
stand−alone components (each, for example, implementing a particular
simulation functionality, physical model or numerical method) and
interoperating with other components with a minimum of customization.

2. To provide a test bed to develop and test other components that implement
numerical methods (e.g. linear solvers, stiff−system solvers etc.).

3. To provide examples to other scientists/engineers of the component−
paradigm of developing simulation codes and to begin collecting a critical
mass of components for others to use and expand on while developing their
codes.

3.2 Simulation Details
The physical system can be thought of as a bi−material plate covered by a
homogeneous mixture of two gases, A and B. The plate consists mainly of a
material with very low heat conductivity with a "channel" of another material with
higher conductivity (Figure 4(a)). The conductivity at any point on the plate is
proportional to the fourth power of the local temperature and inversely
proportional to the third power of Z, a material constant, roughly analogous to
thermal resistance. At the beginning of the simulation, three regions of high
temperature (with a Gaussian temperature distribution) are defined on the plate,
two at the interface of the high− and low−conducting regions and one completely
inside the higher−conducting channel (Figure 4(b)). As the heat diffuses through
the channel, (A + B) react exothermically to form AB. The liberation of heat
behind the diffusing front augments the temperature gradient and also increases
the temperature.

10

3.2.1 Governing Equations
The physical system is modeled using one reaction−diffusion equation for the
evolution of temperature and one for the evolution of the concentrations of each
of the three species, A, B and AB. Equal molecular weight have been assumed
for both A and B along with equal diffusivities. Z is 10 in the red area (Figure 4(a)) or
alternatively, in hatched area (Figure 4(b)) and 100 elsewhere. The full details of
the equations are given in [22].

3.2.2 Reactive Terms
The system is modeled with two chemical reactions, each with its own Arrhenius
rate. The two equations are A + B producing AB and a reverse reaction AB + B
producing A + 2B. The activation energy for the forward reaction is seven times
smaller than that for the reverse reaction − all other reaction rate parameters are
the same.

3.2.3 Initial and Boundary Conditions
The plate is adiabatic and a zero−gradient boundary condition is imposed for
each of the dependent variables. At time t = 0 the concentrations of A and B are
set at 0.5 and no AB is present. A temperature field with three Gaussian hot−
spots is initialized. This is shown in Figure 4(b).

3.2.4 Numerical Method

The equations are integrated by an operator−split integration scheme [23]. The
spatial derivatives are approximated by second−order central difference. The
diffusion is integrated using a second−order time−centered implicit scheme and
the reactive terms using an explicit second−order Runge−Kutta method.

3.3 Components: Description And Design
Simulation codes are traditionally modularized based on functionality. We
perform a coarse decomposition of our application into four parts: data
management, physics, visualization, and linear system solver. The physics part
is an excellent candidate for further decomposition into components
implementing a diffusion model, a chemistry model and a time−integrator. Each
part, provided as a component, is implemented as a C++ class. The classes are
compiled to form shared objects. Access to a class’s public functions (or a
subset thereof) is supported through a Port provided to the framework by the
component. Access to other components’ data and methods are requested
through Uses Ports, which are also registered with the framework. The
connections between the Uses and Provides ports of different components form
the wiring diagram for the simulation code. An illustration of this pattern can be

11

found in the next section.

The functions described above are implemented as follows:

1. DataHolder : The DataHolder implements a regular, Cartesian mesh over a
rectangular/cubical domain along with multiple arrays which contain different
Fields described on the mesh. A 1D domain−decomposition is implemented in
the horizontal direction and each processor is provided with a subsection of
the global mesh and arrays (via index−ranges in the global index space). A
ParameterPort is provided to set the domain limits, the resolution, and the
overlap between sub−domains. A BlockPort is provided to allow the
acquisition of CCA_Blocks. The CCA_Block encapsulates the pointer to the
actual double−precision data and meta−data describing the distributed−array
being accessed. Message passing (during ghost−cell update) is provided by
MPI.

2. ReactionDiffusion : This class implements a purely explicit numerical
scheme used to evolve the phenomenon as well as the models for diffusion
and reaction. The numerical scheme requires the use of 3 DataHolders.
Pointers to the data are acquired once and then used via macros (defined to
allow array−like manipulation of the data) during the implementation of the
numerical scheme. The component provides a ParameterPort to allow
configuration of physical and chemical parameters and a Cart2DPort to
facilitate visualization. There are no invocations of message−passing
methods.

3. ReactionDiffusionImplicit : This class implements the same physics as the
previous class (ReactionDiffusion) except that the diffusion is handled by an
implicit scheme, as mentioned in Section 3.2.4. This results in the formation of
a linear system of equation that need to be solved (an [A] x = b problem)
which allows one to take larger timesteps at the expense of solving the linear
system. Most of the implemetation and structure was adopted from
ReactionDiffusion and consequently, a simulation code scripted using this
component looks very similar to one using ReactionDiffusion (Figures 5 & 6).

4. Eyes: Eyes provides an interface in terms of the CCA_Block abstraction to the
data transfer and visualization package CUMULVS [24]. CUMULVS collates
the distributed array into a large array on one processor. Eyes is SPMD, using
PVM for message−passing. CUMULVS provides a program "slicer" that
implements visualization of the collated array. The data collection and transfer
and the data visualization tools of CUMULVS are both prime candidates for
CCA componentization.

5. SLS_DI and ISIS++ : These classes implement the construction and solution

12

of the linear system ([A] x = b) corresponding to the implicit scheme.
Methods defined in SLS_DI (and called from ReactionDiffusionImplict via the
SimpleLinearSolver port) are used to set the matrix rows on an equation−by−
equation basis. The final [A] and b matrices are constructed and passed to
ISIS++ [25] for solution. ISIS++ implements a number of typical iterative
algorithms for solving linear systems. The results and residuals are then
passed back to the user via methods defined in SLS_DI.

3.4 Results
Figure 5 shows the network which constitutes the simulation code. Three

instances of DataHolder, typical of a second−order time−marching scheme, are
used to hold data fields at different time−levels. An extra DataHolder (dc_data)
contains 1/Z3 (which serves as an approximate for the thermal conductivity of
the material) for the bi−material plate and is provided in the code for visualization
purposes only. Eyes is used to visualize data which is made available when
ReactionDiffusionImplicit passes a reference to the relevant fields. The
components dealing with the linear solver (SLS_DI and ISIS++) are also shown.
A code constructed using ReactionDiffusion (Figure 6) was tested on up to 32
processors on Sandia’s Alpha Linux CPlant [26] cluster.

Figure 7(a), (b) and (c) shows the temperature field from a 100 x 100 simulation
conducted on 3 processors. The three snapshots show the evolution of a
temperature front through the conducting channel. A classical smooth diffusive
decaying temperature profile is strongly modified by the exothermic reactions to
form a relatively steep front and regions of high temperature behind it. A time
delay between the conduction of heat and the effect of chemistry is also
observed (the large regions of high temperature behind the front take a finite
time to develop) and is best captured in Figure 7(d) where the maximum
temperature actually shows a dip before rising. Figure 8 shows the global
temperature field as collated by Eyes and visualized by slicer, which is also seen
to invert the vertical axis.

The final results, from a CCA standpoint, are that we succeeded in building a
SCMD implementation based on the CCA core specification and that we found
necessary several supporting services likely to be common to all HPC CCA
frameworks. We present these services in the next section.

4. Standards enabling the SCMD pattern for HPC
For inter−framework portability, SCMD components need standard ways to do
common tasks. Here we present a short list of facilities (Ports and Components)
that will prove key enablers to the success of parallel component programming in
this SCMD architecture.

13

� A set of parallel context services.
� A Port−Connection Event service.
� An execution port convention (GoPort).
� A Component parameter configuration convention and factory service.
� A parallel data server component.
� An M−process to P−process parallel data exchange between fully

disjoint frameworks.

The two most critical and difficult are the parallel data server abstractions and
MxP inter−framework data sharing abstractions listed last. Both of these are
prototyped in the example application of the previous section. The other
enablers listed are critical to solving simple mechanical issues in runtime
component use. The abstractions created to address these issues in
implementing the example and are candidates for adoption as CCA standard
ports.

4.1 A Set Of Parallel Context Services
The minimal parallel context information needed by a component following the
CCAFFEINE model depends on the parallel communication methods the
component uses, thus the requirements differ for PVM and MPI, for example.
Other communication standards usually have similarly small requirements, so we
will treat PVM and MPI as prototypical.

In PVM, the component instance on a node is able to find the rest of its SPMD
cohort and know that it has done so with some assurance if it can discover from
the framework are the total number nodes in the cohort and the unique collective
string name of the cohort. The framework, or a component it delegates the task
to, can answer both questions. The framework itself knows how many nodes it is
running on, and hence how many the components run on. The CCA specification
provides that each component shall have a unique string associated with it,
accessible through the ComponentId interface. To make this string globally
unique with respect to the PVM daemon when more than one framework may be
running, the ComponentId string must be augmented with a framework id string.

For MPI−based components, in the absence of MPI delivered as a component
library, we propose that all components may assume two things:

1. that MPI_Init has already been called. This follows naturally from the
observations that the component has no main() and that the framework will
need to call MPI_Init if it is going to use MPI.

2. that a properly scoped communicator is obtainable via a Port. The Port may
be supplied by another component wishing to share its communicator (and
messages) or by the framework itself (via a service component).

14

A set of ports matching the description above are by no means the only
message services possible in a CCA framework. More extensive Ports that
encapsulate some common features of MPI and other messaging libraries may
be published by others and implemented in components based on current or
future messaging libraries. Ports supporting thread−handling conventions may
be published. All these extensions are the subject of frequent discussions in the
CCA working group.

4.2 An Execution Port Convention
Once a set of components is wired together, it needs some conventional
callback whereby it can be set in motion by any framework the components
encounter or by another component. In CCAFFEINE we encapsulate this in a
GoPort and the go() function on a particular instance of the GoPort is called
simultaneously across all nodes. A component that can logically be a driver of
some computation provides a GoPort. The go() function has no arguments, such
as the port name or an array of strings, so that both components and
frameworks can call it. More complicated standard execution interfaces have
been discussed in the CCA working group, each having different merits.

Frequently a component that could be a driver is also usable in a subordinate
role, so the end user must be able to specify which of the potentially many
GoPorts appearing within an assemblage of components is the one that the
framework should call.

4.3 A Component Parameter Configuration Convention
Most reusable components will have a number of control parameters that need
to be configured in the course of specifying an application. A common current
approach is to have a global database (the Windows Registry, the X−Window
resources, the UNIX environment, or an equivalent collection of strings) that a
component knows how to look in.

An interface convention is needed whereby the individual component instance
can have full control of its parameters, including which ones it publishes globally
(if any) for arbitrary third party manipulation. In CCAFFEINE we create a facility
which satisfies the following constraints:
� The parameter data implementation is object−oriented and further is viewable

through fully abstract interfaces, in keeping with the CCA component and port
model.

� Callbacks are made on the component, if it is interested, both before value
queries are answered and after values are set. Thus the component can take
corresponding actions. The component merely implements and provides (as
Ports) the necessary listener interfaces to show its interest to any framework

15

providing parameter change notices.
� The parameter objects for each component are held privately in that

component, but the objects themselves are obtained from a factory Port so
the component writer does not have to implement the objects herself.

� The component publishes an interface (provides a ParameterPort) which by
convention informs the framework (or other components, if the application
framer so chooses) that the component has configurable parameters. Due to
the OO nature of the interfaces, a component may provide more than one
such ParameterPort and thus more than one set of parameters.

� The user (framework or component) calling on the ParameterPort can find out
what parameters are currently being published and can set values for them.
The component may hold more parameters within and publish only relevant
subsets based on incremental configurations.

� The parameter objects take care of any parsing and generating of strings that
may be needed.

� Each parameter object requires bounds on the value, a descriptive string, a
default value, a name, and an explanatory string be provided by the
component. These fields are accessible (read−only) to the application framer
to provide guidance in setting the parameters of the component. This ensures
at least minimal documentation of parameters is always immediately available
on−line.

� Within a set of parameters (a ParameterPort) the parameters may be
grouped. This is useful when rendering user interfaces, e.g. in constructing a
tabbed dialog GUI or paged text input dialog.

This facility can in principle be layered over a conventional string database. We
are exploring this avenue jointly with Argonne National Laboratory and we
anticipate using their string database component being extracted from PetSC.

4.4 A Port−Connection Event Service
Many parallel components need to perform staged construction or destruction
(lazy instantiation) during the connection phase of framing as information
becomes acquirable from connected ports. These components need a service
supporting a lightweight listener/notifier design pattern to provide notices of
newly made connections and pending disconnections. The minimal information
provided is the name of the port.

We have implemented such a callback mechanism using Ports in CCAFFEINE
[22], and a related, though more general and weightier, mechanism is
implemented in CCAT. This is currently before the CCA forum for approval as a

16

standard.

4.5 A Parallel Object Data Manager Component
Most object−oriented SPMD−supporting frameworks [6,12] provide some sort of
domain specific high−performance data abstraction. Our central proposal is that
there should be data managers which provide views on SPMD objects
representing, for example, topology, coordinate, and field data. Various
computational agents take turns transforming the values in the underlying heavy
objects, performing initializations, stencil calculations, computing norms of
subsets in the data and so forth. In essence, the computations stream by while
the data sits in one place. The data manager takes care of most memory
management issues.

One such high performance data manager in the finite element domain is the
Data Warehouse of Uintah which, its authors report, is implemented as a CCA
component. We have produced a prototypical Data Holder that manages
structured grid data typical of applications with flow in regular geometries.

Early reuse of the Data Holder in the example application presented earlier in
this paper confirms the utility of the overall CCA Port/Component approach. The
Oak Ridge contributors provided many accurate criticisms of the Data Holder
design and we are proceeding with plans to develop Ports and a Data service
components suitable for applications requiring hierarchical structured grids.
Ideally, the management functions will be independent of the particular form of
data managed.

4.6 M−Process To P−Process Parallel Data Exchange Between
Disjoint CCA Frameworks
Some applications (for example climate modeling) may couple disjoint SPMD
applications through a common data field. A portion of the application runs on M
nodes and another portion runs on P other nodes. Some other examples of this
include visualization and steering where P is likely to be one node on a desktop
remote from the application nodes M.

Often a single SPMD program spans all M+P nodes, simply using node subsets
within the SPMD abstraction provided by the message−passing library of choice.
We hold that an important alternative way exists to create and couple these
distributed applications, one that does not require a single framework spanning
all M+P nodes. Instead, a component can span (by its own internal mechanism)
two applications running in distinct frameworks, as explained in the following
scenario.

� Independently on both M and P, a component of the same type is
instantiated. Upon proper configuration by the user (or other interface) the

17

independent components connect over the network to each other in a high
performance mode, forming an MxP component we will denote as C.

� This single C "inter−framework" component behaves (from the point of view
of the individual frameworks) as if it only exists within their separate frames.

� Some component on each side registers its view of the actual data with the
half of C in its frame, providing a string name for the data and
decomposition information.

� The component C creates and provides the data proxy Ports needed (since
it is the only component in which all the pieces of the puzzle are known).

� At no time does C require that the two frameworks inter−operate directly.
Coordinated actions driven by the same (probably living) agent external to
both frameworks must not be confused with direct interoperation at a
network protocol level.

Such a component will need to satisfy the following requirements:
� Framework independence:
� The components on M are framed separately from those in P.
� The CCA framework implementations used in M and P may be entirely

different in their details.
� Strong symmetry:

� On M will appear the actual data in its M−distribution.
� On P will appear the actual data in its P−distribution.
� On M will appear a proxy to the data on P and vice versa, provided by the

component C.
� On M the proxy will present its meta−information about P through a Port

that (obviously) is in the shape of M, and vice versa. The term "nearly
opaque remote reference" may be substituted for "proxy".

� Importantly, the proxies do not necessarily imply a memory copy of the
data being exchanged between M and P. The buffering and blocking
policies specified by the user at either side may require a local duplication,
but the Ports in question should provide at least one low−memory−
consumption configuration alternative.

� Either M or P may connect/disconnect independently of the other side’s
wishes. However, the other side will be notified or blocked until the
connection is established, whichever is indicated by the functions used in
the Port.

We expect all of the following factors to influence the implementation, optimality,
and generality of MxP components meeting the above requirements:

18

� Choice of communication library.
� Hardware and OS, if conventional libraries are bypassed.
� Type and structure of data shared.
� Expected patterns of updating (bidirectional/asynchronous).
� Expected size ratio of M and P, particularly, Mx1 and 1xP.

There will be other important factors as well. We are jointly investigating the
design and implementation of such a set of Ports and components derived from
CUMULVS with the authors of CUMULVS and consulting the collective wisdom
of the CCA working group in this area [27].

There are unquestionably other facilities that will be common across SCMD
framework implementations. We believe the six presented above should be
addressed before the mass of auxiliary services is addressed.

Conclusions
We presented an approach to a high performance parallel computing component
model. Our motivation is to produce the simplest extension to the current
practices in the SPMD style of programming. We explored the concept of
Single Component Multiple Data parallelism, where all components in a cohort
are instantiated, connected, and controlled identically by the framework. We
discussed the key runtime architectural features and support interfaces. We
demonstrated the CCA architecture in an SCMD HPC application, and we
proposed six enabling facilities that support HPC application construction.

Acknowledgments

 The work was partly supported by MICS Department of the U.S. Department of
Energy through the DOE2000 programm. For more information contact the CCA
Forum at http://z.ca.sandia.gov/~cca−forum.

19

Bibliography
1. AVS webpage at http://www.avs.com/

2. The Mathworks webpage at http://www.mathworks.com/

3. The netlib repository at http://www.netlib.org/

4. J. Reynders et al. POOMA: A framework for scientific simulationson parallel
architectures. In "Parallel Programming using C++," editors Gregory Wilson
and Paul Lu, MIT Press, 1996; pp 553−594.

5. S. Karmesin, J. Crotinger, J. Cummings, S. Haney, W. Humphrey, J.
Reynders, S. Smith and T. Williams. Array Design and Expression Evaluation
in POOMA II. Lecture Notes in Computer Science, 1505, 1998; pg.231.

6. Sierra webpage at http://www.cfd.sandia.gov/sierra.html

7. Brown, D., Chesshire, G., Henshaw, W., and Quinlan, D., OVERTURE: An
Object−Oriented Software System for Solving Partial Differential Equations in
Serial and Parallel Environments. Proceedings of the SIAM Parallel
Conference, Minneapolis, MN. March, 1997.

8. E. Chow, A. Cleary and R. Falgout. Design of the HYPRE Preconditioner
Library. In Object Oriented Methods for Interoperable Scientific and
Engineering Computing, M. E. Henderson, C. R. Anderson and S. L. Lyons,
SIAM, Philadelphia, PA, 1999.

9. Parashar and J.C. Browne. System Engineering for High Performance
Computing Software : The HDDA/DAGH Infrastructure for Implementation of
Parallel Structured Adaptive Mesh Refinement. In IMA Volume 117:
Structured Adaptive Mesh Refinement Grid Methods. Editors: S.B. Baden,
N.P. Chrisochoides, D.B. Gannon and M.L. Norman, Springer−Verlag,
January 2000 ; pp1−18.

10.M. Parashar, J.C. Browne et al. A Common Data Management Infrastructure
for Parallel Adaptive Algorithms for PDE Solutions. Proceedings of
Supercomputing’97, November 1997.

11.S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith. Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries. In Modern
Software Tools in Scientific Computing, E. Arge, A.M. Bruaset and H.P.
Langtangen, Birkhauser Press, 1997; pp163−202.

12.J. Davison de St. Germain, J. McCorquodale, S.G. Parker, C.R. Johnson.
Unitah: A Massively Parallel Problem Solving Environment. HPDC’00 : Ninth
IEEE International Symposium on High Performance and Distributed
Computing, August 2000.

13.R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S.

20

Parker and B. Smolenski. Towards a Common Component Architecture for
High−Performance Scientific Computing. Eight IEEE International Symposium
on High Perfomance Distributed Computing, August 1999.

14.R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B.
Temko and M. Yechuri. A Component Based Services Architecture for
Building Distributed Applications. Proceedings High Performance Distributed
Computing Conference, 2000.

15.Visual Basic webpage at http://msdn.microsoft.com/vbasic (accessed
December 12, 2000).

16.R. Englander and M. Loukides. Developing Java Beans (Java Series).
O’Reilly and Associates, 1997. ISBN : 1565922891, also
http://www.java.sun.com/products/javabeans

17.CORBA Component Model webpage at http://www.omg.org (accessed
December 12, 2000).

18.V. Matena, M. Hapner and B. Stearns. Applying Enterprise JavaBeans:
Component−Based Development for the J2EE Platform (The Java Series),
Addison−Wesley Pub. Co., 2000. ISBN: 0201702673.

19.CCA forum’s Common Component Architecture Specification webpage
http://z.ca.sandia.gov/~cca−forum/spec (accessed December 20, 2000).

20.B. Smolinski, S. Kohn, N. Elliott, N. Dykman, N. and G. Kumfert. Language
Interoperability for High−Performance Parallel Scientific Components. Int’l
Sym. on Computing in Object−Oriented Parallel Environments (ISCOPE ’99),
1999.

21.S. Kohn, G. Kumfert, J.Painter, and C. Ribbens. Divorcing Language
Dependencies from a Scientific Software Library. 10th SIAM Conference on
Parallel Processing, 2000, March , SIAM.

22.Web appendix accompanying this paper http://z.ca.sandia.gov/~cca−
forum/Concurrency00Appendix.html (accessed December 22, 2000).

23.H.N. Najm, R.B. Milne, J. Ray, K.D. Devine and S. Kempka. Operator−Split
Lagrangian−Eulerian Time Integration. Submitted, J. Comp. Phys., February
2000.

24.CUMULVS web page at http://www.epm.ornl.gov/cs/cumulvs.html (accessed
December 12, 2000)

25.Isis++ web page at http://z.ca.sandia.gov/isis (accessed Decemer 12, 2000)

26.CPlant web page at http://www.cplant.ca.sandia.gov/ (accessed December
12, 2000).

27.CCA forum’s webpage at http://z.ca.sandia.gov/~cca−forum/spec/ (accessed
December 20, 2000).

21

Figures

Figure 1: Making peer−to−peer connections in a CCA framework

22

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")
1

Port

Port

Port

addProvidesPort(,"A")

= getPort("A")Port

3

Figure 2: Illustration of the cohort and component interactions permitted by CCA.

23

Figure 3 Figure(a) above, illustrates the structure of the SPMD component
framework. The MuxingProcess connects the control program to the cohort of
instances of the SPMD framework. Figure (b) illustrates the self−similar nature
of the MuxingProcess.

24

Figure 4(a) on the top plots 1 / Z, a measure of thermal conductivity. We see a
primarily non−conducting plate with a conducting channel embedded in it. Below,
Figure 4(b) shows the initial conditions with "hot−spots" centered at (0.25, 0.1),
(0.5, 0.85) and (0.75, 0.1) in an (0, 1.0), (0, 1.0) domain.

25

Figure 5. A snapshot of the "wiring diagram" for the reaction−diffusion code. 4
DataHolders (data, predicted_data, old_data, dc_data) are seen connected to
the ReactionDiffusionImplicit component (RDI) along with an Eyes Component
(VizComponent). RDI solves diffusion in an implicit manner, constructing the
distributed linear system using a SLS_DI component (LinearSolverInterface) and
actually solves the system of equation using an ISIS++ component
(IsisLinearSolverPackage). The Ports registered by each component are seen
prominently and serve as a means of setting user−modifiable component
parameters (e.g. mesh resolution, physical and chemical constants etc.).

26

Figure 6. Wiring diagram of the reaction−diffusion code, implemented with a
purely explicit numerical scheme. While the actual physics component has
changed (RD is of class ReactionDiffusion, instead of ReactionDiffusionImplicit,
as shown in the previous figure), we show reuse of the DataHolder components
as well as the Eyes component. This simulation code was tested on 32
processors on Sandia National Laboratories Cplant cluster. This picture also
shows an unused and unconnected DataHolder (viz_data).

27

Figure 7. Snapshots of the temperature field at t = 0. 0.02 and 0.08 are shown in
Figure 7 (a), (b) and (c). The initial conditions shows the 3 "hot−spots". In (b) we
see heat diffusing through the conducting channel. This is rapid enough that the
top "hot−spot" actually shows a decrease in maximum temperature compared to
its state at t = 0. In (c) we see that heat production by chemical reaction at the
hot−spots exceed transport by diffusion leading to heat and temperature build−
up. This is most dramatic in the top hot−spot which shows a net increase in
temperature. Diffusion fronts are seen to be sharp, unlike the classical
exponential decay characteristic of pure diffusive physics. An asymmetry is also
seen and is due to the coarse resolution − this is seen to disappear on finer
meshes. In (d) we plot the maximum temperature versus time. It is seen to dip
initially when diffusion transports energy away from the hot−spots and thereafter
rises as the exothermic reaction release heat in regions where the temperature
is sufficiently high to have non−zero reaction rates.

28

Figure 8. A screen shot of the "slicer" visualization tool included with CUMULVS.
Temperature data, collated from three processors onto one by "VizComponent "
is shown here. This serves as an automatic monitoring tool since the picture is
continuously updated as the simulation proceeds. Slicer is used to view all the
relevant fields (temperature and each of the species). Note that slicer "flips" the
picture about the horizontal axis.

29

